Answer:
60words/minute
Explanation:
If Sunitha can type 1800 words in half an hour, this can be expressed as;
1800 words = 30 minutes
To get her typing speed per minute, we will use the formula
Speed = Number of words/Time used
Typing speed = 1800/30
Typing speed = 60words/minute
Hence her typing speed in words per minute is 60words/minute
Answer:
This question is incomplete
Explanation:
This question is incomplete because of the absence of options. However, one material that is good candidate for conducting electricity without reacting with other materials is metallic vanadium dioxide. This is because of the inability of this electrical conductor to conduct heat (an unusual property for all other electrical conductors) and thus makes it difficult for it to react with other materials (since an increase in temperature increases possibility of a reaction).
Answer:
Both of them reach the lake at the same time.
Explanation:
We have equation of motion s = ut + 0.5at²
Vertical motion of James : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²

Vertical motion of John : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²

So both times are same.
Both of them reach the lake at the same time.
A compound is a substance that consists of two or more elements, which is chemically combined, meaning that it could only be split by chemical means.
Examples:-
- NaCl is salt, chemically combined of Sodium and Chloride.
- H2O is water, chemically combined of Hydrogen and oxygen.
Answer: D.) electromagnetic induction
Explanation: Electroctromagnetic induction may be explained as a process whereby electric current is induced or produced by difference in potential resulting from the movement of conductor across a magnetic field.
In simple terms, an electromotive force is induced when a magnet is moved through a conducting loop.
The electromotive force produced by moving a magnet through a conducting loop can be represented by the relation:
E = - N (dΦ / dt)
Where E = electromotive force in voltage
N = number of loop in conductor
dΦ = change in magnetic Flux
dt = change in time