Answer:
Choice a.
, assuming that the skating rink is level.
Explanation:
<h3>Net force in the horizontal direction</h3>
There are two horizontal forces acting on the boy:
- The pull of his friend, and
- Frictions.
The boy should be moving in the direction of the pull of his friend. The frictions on this boy should oppose that motion. Therefore, the frictions on the boy would be in the opposite direction of the pull of his friend.
The net force in the horizontal direction should then be the difference between the pull of the friend, and the friction on this boy.
.
<h3>Net force in the vertical direction</h3>
The net force on this boy should be zero in the vertical direction. Consider Newton's Second Law of motion. The net force on an object is proportional to its acceleration. In this question, the net force on this boy in the vertical direction should be proportional to the vertical acceleration of this boy.
However, because (by assumption) the ice rink is level, the boy has no motion in the vertical direction. His vertical acceleration will be zero. As a result, the net force on him should also be zero in the vertical direction.
<h3>Net force</h3>
Therefore, the (combined) net force on this boy would be:
.
Answer:
C. both a speed and a direction
Answer: Well the answer is KE = 5.625E-7 i just don't know the units for it...
Hope this helps....... Stay safe and have a Merry Christmas!!!!!!!!!! :D
Better technology is helping us because we can see more stuff like the microscope we able to make assumptions based on what we saw.
Answer:
14m/s
Explanation:
Given parameters:
Radius of the curve = 50m
Centripetal acceleration = 3.92m/s²
Unknown:
Speed needed to keep the car on the curve = ?
Solution:
The centripetal acceleration is the inwardly directly acceleration needed to keep a body along a curved path.
It is given as;
a =
a is the centripetal acceleration
v is the speed
r is the radius
Now insert the parameters and find v;
v² = ar
v² = 3.92 x 50 = 196
v = √196 = 14m/s