Answer: Option (d) is the correct answer.
Explanation:
It is known that length of a bond is inversely proportional to the bond strength. This also means that a single bond has long length due to which it is weak in nature.
And, a double bond is shorter in length and has more strength as compared to a single bond. Whereas a triple bond has the smallest length and it has high strength as compared to a double or single bond.
For example, carbon monoxide is CO where there is a triple bond between the carbon and oxygen atom.
Carbon dioxide is
where there exists a double bond between the carbon and oxygen atom.
A carbonate ion is
when two oxygen atoms are attached through single bond with the carbon atom and another oxygen atom is attached through a double bond to the carbon atom.
Hence, we can conclude that order of increasing bond strength of the given carbon oxygen bond is as follows.
Carbonate ion < carbon dioxide < carbon monoxide
Explanation:
xác định nội năng chuẩn ΔU của phản ứng tổng hợp amoniac
ở 400 0 C, biết :
N 2(k) + 3H 2(k) = 2NH 3(k) ΔH 0 T = - 109,0 kJ
I believe KI is not a a binary molecule.
Your welcome
____NaNO3 + ___PbO --> ___Pb(NO3)2 + ___Na[2]O
To balace the eqaution, you need to have the same number of atoms for each element on both the reactant (left) and product (right) side.
To start off, you wanna know the number of atoms in each element on both sides, so take it apart:
[reactants] [product]
Na- 1 Na- 2
N- 1 N- 2(it's 2 because the the subscript [2] is outside of the parenthesis)
O- 4 O- 7 (same reason as above)
Pb- 1 Pb- 1
Na is not balanced out, so add a coefficient to make it the same on both sides.In this case, multiply by 2:
2NaNO3
Now Na is balanced, but the N and O are also effected by this, so they also have to be multiplied by 2 and they become:
Na- 2 Na- 2
N- 2 N- 2 (it balanced out)
O- 7 (coefficient times subscript, plus lone O) O- 7 (balanced out)
Pb was already balanced so no need to mess with it, just put a 1 where needed (it doesn't change anything).
Now to put it back together, it will look like this:
2NaNO3 + 1PbO --> 1Pb(NO3)2 + 1Na[2]O
Answer:
atoms of hydrogen are there in
35.0 grams of hydrogen gas.
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:
1 mole of hydrogen
=
atoms
17.5 mole of hydrogen
=
atoms
There are
atoms of hydrogen are there in
35.0 grams of hydrogen gas.