Answer:yes
Explanation:
Work is done on an object when an applied force causes the object to move in the same direction as the force
i'm stuck on that question also
Answer:
31.75 m/s
Explanation:
h = 41.7 m
Let the initial velocity of the second stone is u
Let the time taken to reach to the bottom by the first stone is t then the time taken by the second stone to reach the ground is t - 1.8.
For first stone:
Use second equation of motion

Here, u = 0, g = 9.8 m/s^2 and t be the time and h = 41.7
So, 41.7= 0 + 0.5 x 9.8 x t^2
41.7 = 4.9 t^2
t = 2.92 s ..... (1)
For second stone:
Use second equation of motion

Here, g = 9.8 m/s^2 and time taken is t - 1.8 = 2.92 - 1.8 = 1.12 s, h = 41.7 m and u be the initial velocity
.... (2)
By equation the equation (1) and (2), we get

u = 31.75 m/s
Answer:
The unbalanced force that caused the ball to stop was friction
Explanation:
As Newton's second law states, the acceleration of an object is proportional to the net force applied on the object:

therefore, in order to move at constant speed, an object should have a net force of zero (balanced forces) acting on it.
In this case, the ball slows down and eventually comes to a stop: it means that the ball is decelerating, so there are unbalanced forces (net force different from zero) acting on it. The unbalanced force acting on the ball is the friction: friction is a force against the motion of the object, which is due to the contact between the surface of the ball and the surface of the street, and this force is responsible for slowing down the ball.
Answer:
Island arc
Explanation:
When two oceanic plates share a convergent type of plate boundary, the denser oceanic plate will subduct below the less dense oceanic plate. This will result in the formation of the subduction zone, where the rocks are being pulled down to the mantle. This subduction zone is typically marked by the presence of a narrow depression commonly known as an oceanic trench, that lies just above the zone.
The rocks of the subducting plate undergo partial melting and mix up with the magma that rises upwards towards the surface due to the force exerted by the convection currents. This later gives rise to the formation of volcanoes or a chain of volcanoes which are commonly known as an island arc.