Coulomb's Law: Force = k x q1x q2 divided distance square
where k=9x10^9 , q1 and q2 are the charge
So if you distance is halved, your force is stronger by 4 times
and if you distance is doubled, your force is 1/4
Ask me again if you aren't clear :)
Answer:
(a) 1.85 m/s
(b) 4.1 m/s
Explanation:
Data
- initial bullet velocity, Vbi = 837 m/s
- wooden block mass, Mw = 820 g
- initial wooden block velocity, Vwi = 0 m/s
- final bullet velocity, Vbf = 467 m/s
(a) From the conservation of momentum:
Mb*Vbi + Mw*Vwi = Mb*Vbf + Mw*Vwf
Mb*(Vbi - Vbf)/Mw = Vwf
4.1*(837 - 467)/820 = Vwf
Vwf = 1.85 m/s
(b) The speed of the center of mass speed is calculated as follows:
V = Mb/(Mb + Mw) * Vbi
V = 4.1/(4.1 + 820) * 837
V = 4.1 m/s
<span>fluid friction of the air also known as drag</span>
Answer:
<h2>1.75 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 3.5 × 0.5 = 1.75
We have the final answer as
<h3>1.75 N</h3>
Hope this helps you
Answer:
a. 9.8 m/s2.
Explanation:
The acceleration depends on the force of gravity. It's independent of the velocity of the ball.