Yes , the response of the light bulb depend on how fast you move the bar magnet
Flux is the presence of a force field in a specified physical medium, or the flow of energy through a surface
Lenz's law states that the induced electromotive force with different polarities induces a current whose magnetic field opposes the change in magnetic flux through the loop in order to ensure that the original flux is maintained through the loop when current flows in it.
Yes, waving a magnet around does create an electromagnetic wave which does affect the light bulb .
Due to motion of the bar, there will be a constant change in flux and due to Lenz's Law a current within the coil will be induced . This induced current can be used to power the light bulb.
As we know that the greater the speed, the greater the magnitude of the current, and the current is zero when there is no motion.
There will be change in brightness as the bar moves with faster speed.
To learn more about Lenz's Law
brainly.com/question/10048453
#SPJ4
Answer:
The value is 
Explanation:
From the question we are told that
The circuit resistance is
The feedback resistance is
The offset current is 
Generally the offset voltage is mathematically reparented as

=> 
=> 
Answer:
The average velocity is 50 km/h south
Explanation:
The average velocity of an object is its total displacement divided by
the total time taken.
That means it is the rate at which an object changes its position from
one place to another.
Average velocity is a vector quantity.
The SI unit is meters per second.
A bicycle that starts 100 km south and is 120 km south of town after
0.4 hour.
The displacement = 120 - 100 = 20 km south
The time = 0.4 hour
The average velocity =
, where D is the displacement
and t is the time
The average velocity of the bicycle =
km/h
<em>The average velocity is 50 km/h south</em>
If you want it in meter per second, change the kilometer to meter
and change the hour to seconds
1 km = 1000 m
1 hour = 60 × 60 = 3600 seconds
The average velocity of the bicycle =
m/s south
13.0m/s
1.2m/s
Explanation:
Given parameters:
Initial speed of the body = 7.1m/s
time taken = 2.23s
Acceleration = 2.64m/s²
Unknown:
Final speed = ?
Solution:
Acceleration is the rate of change of velocity with time.
a = 
a = acceleration
V = final speed
U = initial speed
T = time taken
Input the variables and solve for V;
2.64 =
V - 7.1 = 5.9 expression 1
V = 5.9 + 7.1 = 13.0m/s
B
Using the same parameters, the speed after a uniform deceleration of -2.64m/s², the negative sign implies deceleration;
from expression 1;
V - 7.1 = -5.9
V = -5.9 + 7.1 = 1.2m/s
learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly
I’m not 100% sure but i think it’s A because if you divide the speed by the time you get 2 and also all the other answer choices don’t make any sense!