<span>(2.09 mL) x (1.592 g/mL) / (227.0871 g C3H5O9N3/mol) = 0.014652 mole C3H5O9N
4 moles C3H5O9N produce 12 + 6 + 1 + 10 = 29 moles of gases, so:
(0.014652 mole C3H5O9N) x (29/4) = 0.106 mole of gases
(b)
(0.106 mol) x (46 L/mol) = 4.88 L gases
(c)
(0.014652 mole C3H5O9N) x (6/4) x (28.0134 g/mol) = 0.616 g N2</span>
Carbon has 4 valence electrons, oxygen has 6
Answer:
A biology investigation usually starts with an observation—that is, something that catches the biologist’s attention. For instance, a cancer biologist might notice that a certain kind of cancer can't be treated with chemotherapy and wonder why this is the case. A marine ecologist, seeing that the coral reefs of her field sites are bleaching—turning white—might set out to understand why.
How do biologists follow up on these observations? How can you follow up on your own observations of the natural world? In this article, we’ll walk through the scientific method, a logical problem-solving approach used by biologists and many other scientists.
Explanation: