The concept needed to solve this problem is average power dissipated by a wave on a string. This expression ca be defined as

Here,
= Linear mass density of the string
Angular frequency of the wave on the string
A = Amplitude of the wave
v = Speed of the wave
At the same time each of this terms have its own definition, i.e,
Here T is the Period
For the linear mass density we have that

And the angular frequency can be written as

Replacing this terms and the first equation we have that



PART A ) Replacing our values here we have that


PART B) The new amplitude A' that is half ot the wavelength of the wave is


Replacing at the equation of power we have that


Answer:
V = (Vx^2 + Vy^2)^1/2 = (40^2 + 62^2)^1/2
V = 73.8 m/s
tan theta = Vy / Vx = 62/40 = 1.55
theta = 57.2 deg
Answer:
The magnitude and direction of the magnetic field is 93.63 T in negative x direction.
Explanation:
Given;
speed of the electron in positive y direction, v = 2.0 x 10⁵ m/s
magnetic force on the electron, F in negative z direction = 3.0 x 10⁻¹² N
The magnitude of the magnetic force is given by;
F = Qv x B
B = F / Qv

The direction of the magnetic field is is as;
Based on the direction of magnetic force (negative z direction), the charge will be directed into negative y-direction because electron is negatively charged. Thus, the direction of the magnetic field will be in the negative x-direction

Therefore, the magnitude and direction of the magnetic field is 93.63 T in negative x direction.
Answer:
1.29649
488.08706 nm

231715700.28346 m/s
Explanation:
n denotes refractive index
1 denotes air
2 denotes solution
= 632.8 nm
From Snell's law we have the relation

Refractive index of the solution is 1.29649
Wavelength is given by

The wavelength of the solution is 488.08706 nm
Frequency is given by

The frequency is 

The speed in the solution is 231715700.28346 m/s
Answer:
273.15
Explanation:
So that's three over two times 1.38 times ten to the minus twenty-three joules per Kelvin, times 5500 degrees Celsius, the surface of the sun converted into Kelvin by adding 273.15. This works out to 1.20 times ten to the minus nineteen joules. So that's the average kinetic energy of hydrogen atoms.