1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena-2011 [213]
3 years ago
11

An ideal Otto cycle has a compression ratio of 9.2 and uses air as the working fluid. At the beginning of the compression proces

s, air is at 98 kPa and 27°C. The pressure is doubled during the constant-volume heat-addition process. Accounting for the variation of specific heats with temperature, determine (a) the amount of heat transferred to the air (qout), (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle.
Engineering
1 answer:
Allushta [10]3 years ago
3 0

Answer:

(a) The amount of heat transferred to the air, q_{out} is 215.5077 kJ/kg

(b) The net work output, W_{net}, is 308.07 kJ/kg

(c) The thermal efficiency is 58.8%

(d) The Mean Effective Pressure, MEP, is 393.209 kPa

Explanation:

(a) The assumptions made are;

c_p = 1.005 kJ/(kg·K), c_v = 0.718 kJ/(kg·K), R = 0.287 kJ/(kg·K),

Process 1 to 2 is isentropic compression, therefore;

T_{2}= T_{1}\left (\dfrac{v_{1}}{v_{2}}  \right )^{k-1} = 300.15\times 9.2^{0.4} = 729.21 \, K

From;

\dfrac{p_{1}\times v_{1}}{T_{1}} = \dfrac{p_{2}\times v_{2}}{T_{2} }

We have;

p_{2} = \dfrac{p_{1}\times v_{1}\times T_{2}}{T_{1} \times v_{2}} = \dfrac{98\times 9.2\times 729.21}{300.15 } = 2190.43 \, kPa

Process 2 to 3 is reversible constant volume heating, therefore;

\dfrac{p_3}{T_3} =\dfrac{p_2}{T_2}

p₃ = 2 × p₂ = 2 × 2190.43 = 4380.86 kPa

T_3 = \dfrac{p_3 \times T_2}{p_2} =\dfrac{4380.86  \times 729.21}{2190.43} = 1458.42 \, K

Process 3 to 4 is isentropic expansion, therefore;

T_{3}= T_{4}\left (\dfrac{v_{4}}{v_{3}}  \right )^{k-1}

1458.42= T_{4} \times \left (9.2 \right )^{0.4}

T_4 = \dfrac{1458.42}{(9.2)^{0.4}}  = 600.3 \, K

q_{out} = m \times c_v \times (T_4 - T_1) = 0.718  \times (600.3 - 300.15) = 215.5077 \, kJ/kg

The amount of heat transferred to the air, q_{out} = 215.5077 kJ/kg

(b) The net work output, W_{net}, is found as follows;

W_{net} = q_{in} - q_{out}

q_{in} = m \times c_v \times (T_3 - T_2) = 0.718  \times (1458.42 - 729.21) = 523.574 \, kJ/kg

\therefore W_{net} = 523.574 - 215.5077 = 308.07 \, kJ/kg

(c) The thermal efficiency is given by the relation;

\eta_{th} = \dfrac{W_{net}}{q_{in}} \times 100=  \dfrac{308.07}{523.574} \times 100= 58.8\%

(d) From the general gas equation, we have;

V_{1} = \dfrac{m\times R\times T_{1}}{p_{1}} = \dfrac{1\times 0.287\times 300.15}{98} =0.897\, m^{3}/kg

The Mean Effective Pressure, MEP, is given as follows;

MEP =\dfrac{W_{net}}{V_1 - V_2} = \dfrac{W_{net}}{V_1 \times (1- 1/r)}= \dfrac{308.07}{0.897\times (1- 1/9.2)} = 393.209 \, kPa

The Mean Effective Pressure, MEP = 393.209 kPa.

You might be interested in
How does warming up the tires on a car increase grip with the pavement?
ICE Princess25 [194]

Answer:

because burning rubber increases the grip power

8 0
2 years ago
Brainliest need help
insens350 [35]

Answer:

answer c

Explanation:

4 0
2 years ago
Tahir travel twice as far as ahmed, but onley one third as fast. Ahmed starts travel on tuesday at noon at point x to point z 30
shepuryov [24]

Answer:

6:00 pm the next day

Explanation:

Given that

Tahir traveled twice as far as Ahmed. We say,

Ahmed traveled a distance, D

Tahir would travel a distan, 2D

Tahir traveled 1/3 as fast as Ahmed, so we say

Ahmed traveled at a speed, S

Tahir would travel at a speed, S/3

If Ahmed starts travel on tuesday at noon at point x to point z 300km, by 9:00pm,

Time taken by Ahmed to travel is

9:00 pm - 12:00 pm = 9 hours

Ahmed, traveled 300 km in 9 hours, meaning he traveled at 33.3 km in an hour.

Speed, S that Ahmed traveled with is 33.3 km/h

Remember, we stated that Tahir travels at a speed of S/3, that is, The speed of Tahir is

33.3/3 = 11.1 km/h.

300 km would then be traveled in 300 km/11.1 km/h = 27 hours.

Tahir started traveling, 3 hours after Ahmed, that is 12:00 pm + 3:00 hrs = 3:00 pm, and if he's to spend 27 hours on the journey he would reach destination z at 6:00 pm the next day

7 0
2 years ago
What technology has been used for building super structures​
AleksAgata [21]

Answer: Advanced technologixal machines

Explanation: such as big cranes, multiple workers helping creat said structure, and big bull dozers

7 0
2 years ago
A 03-series cylindrical roller bearing with inner ring rotating is required for an application in which the life requirement is
-BARSIC- [3]

Answer:

\mathbf{C_{10} = 137.611 \ kN}

Explanation:

From the information given:

Life requirement = 40 kh = 40 40 \times 10^{3} \ h

Speed (N) = 520 rev/min

Reliability goal (R_D) = 0.9

Radial load (F_D) = 2600 lbf

To find C10 value by using the formula:

C_{10}=F_D\times \pmatrix \dfrac{x_D}{x_o +(\theta-x_o) \bigg(In(\dfrac{1}{R_o}) \bigg)^{\dfrac{1}{b}}} \end {pmatrix} ^{^{^{\dfrac{1}{a}}

where;

x_D = \text{bearing life in million revolution} \\  \\ x_D = \dfrac{60 \times L_h \times N}{10^6} \\ \\ x_D = \dfrac{60 \times 40 \times 10^3 \times 520}{10^6}\\ \\ x_D = 1248 \text{ million revolutions}

\text{The cyclindrical roller bearing (a)}= \dfrac{10}{3}

The Weibull parameters include:

x_o = 0.02

(\theta - x_o) = 4.439

b= 1.483

∴

Using the above formula:

C_{10}=1.4\times 2600 \times \pmatrix \dfrac{1248}{0.02+(4.439) \bigg(In(\dfrac{1}{0.9}) \bigg)^{\dfrac{1}{1.483}}} \end {pmatrix} ^{^{^{\dfrac{1}{\dfrac{10}{3}}}

C_{10}=3640 \times \pmatrix \dfrac{1248}{0.02+(4.439) \bigg(In(\dfrac{1}{0.9}) \bigg)^{\dfrac{1}{1.483}}} \end {pmatrix} ^{^{^{\dfrac{3}{10}}

C_{10} = 3640 \times \bigg[\dfrac{1248}{0.9933481582}\bigg]^{\dfrac{3}{10}}

C_{10} = 30962.449 \ lbf

Recall that:

1 kN = 225 lbf

∴

C_{10} = \dfrac{30962.449}{225}

\mathbf{C_{10} = 137.611 \ kN}

7 0
2 years ago
Other questions:
  • The type of current that flows from the electrode across the arc to the work is called what?
    5·1 answer
  • An aquifer has three different formations. Formation A has a thickness of 8.0 m and hydraulic conductivity of 25.0 m/d. Formatio
    9·1 answer
  • During an experiment conducted in a room at 25°C, a laboratory assistant measures that a refrigerator that draws 2 kW of power h
    13·1 answer
  • What friction rate should be used to size a duct for a static pressure drop of 0.1 in wc if the duct has a total equivalent leng
    9·1 answer
  • A long rod of 60-mm diameter and thermophysical properties rho=8000 kg/m^3, c=500J/kgK, and k=50 W/mK is initally at a uniform t
    8·1 answer
  • Giving out 100 coins cuz why not?​
    11·1 answer
  • Write a Nested While Loop that will increment the '*' from 1 to 10.
    6·1 answer
  • What’s the answer???
    9·1 answer
  • 1: asha started abusness with 30.000
    8·1 answer
  • What are the two (2) different design elements of scratch?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!