1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ira [324]
3 years ago
11

We need to design a logic circuit for interchanging two logic signals. The system has three inputs I1I1, I2I2, and SS as well as

two outputs O1 and O2. When S is low, we should have O1 = I1 and O2 = I2. On the other hand, when S is high,we should have O1 = I2 and O2 =I1. Thus, S acts as the control input for a reversing switch. Use Karnaugh maps to obtain a minimal SOP(sum ofproduct) design. Draw the circuit.

Engineering
1 answer:
Salsk061 [2.6K]3 years ago
7 0

Explanation:

Inputs and Outputs:

There are 3 inputs = I₁, I₂, and S

There are 2 outputs = O₁ and O₂

The given problem is solved in three major steps:

Step 1: Construct the Truth Table

Step 2: Obtain the logic equations using Karnaugh map

Step 3: Draw the logic circuit

Step 1: Construct the Truth Table

The given logic is

When S = 0 then O₁ = I₁ and O₂ = I₂

When S = 1 then O₁ = I₂ and O₂ = I₁

I₁     |     I₂     |    S    |    O₁    |    O₂

0     |     0     |    0    |    0    |     0

0     |     0     |    1     |    0    |     0

0     |     1      |    0    |    0    |     1

0     |     1      |    1     |    1     |     0

1      |     0     |    0    |    1     |     0

1      |     0     |    1     |    0    |     1

1      |     1      |    0    |    1     |     1

1      |     1      |    1     |    1     |     1

Step 2: Obtain the logic equations using Karnaugh map

Please refer to the attached diagram where Karnaugh map is set up.

The minimal SOP representation for output O₁

$ O_1 = I_1 \bar{S}  + I_2 S $

The minimal SOP representation for output O₂

$ O_2 = I_2 \bar{S}  + I_1 S $

Step 3: Draw the logic circuit

Please refer to the attached diagram where the circuit has been drawn.

You might be interested in
Yield and tensile strengths and modulus of elasticity . with increasing temperature. (increase/decrease/independent)
meriva

Answer:

Yield strength, tensile strength decreases with increasing temperature and modulus of elasticity decreases with increasing in temperature.

Explanation:

The modulus of elasticity of a material is theoretically a function of the shape of curve plotted between the potential energy stored in the material as it is loaded versus the inter atomic distance in the material. The temperature distrots the molecular structure of the metal and hence it has an effect on the modulus of elasticity of a material.

Mathematically we can write,

E(t)=E_o[1-a\frac{T}{T_m}]

where,

E(t) is the modulus of elasticity at any temperature 'T'

E_o is the modulus of elasticity at absolute zero.

T_{m} is the mean melting point of the material

Hence we can see that with increasing temperature modulus of elasticity decreases.

In the case of yield strength and the tensile strength as we know that heating causes softening of a material thus we can physically conclude that in general the strength of the material decreases at elevated temperatures.

6 0
3 years ago
A column has a 4.8 cm by 8.7 cm rectangular cross section and a height 4 mm . The column is fixed at both ends and has a lateral
Elden [556K]
I’m literally so sorry
3 0
3 years ago
An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate is found to be 1% pe
LenaWriter [7]

Answer:

a) Q = 251.758 kJ/mol

b) creep rate is    = 1.751 \times 10^{-5} \% per hr

Explanation:

we know Arrhenius expression is given as

\dot \epsilon =Ce^{\frac{-Q}{RT}

where

Q is activation energy

C is pre- exponential constant

At 700 degree C creep rate is\dot \epsilon = 5.5\times 10^{-2}% per hr

At 800 degree C  creep rate is\dot \epsilon = 1% per hr

activation energy for creep is \frac{\epsilon_{800}}{\epsilon_{700}} = = \frac{C\times e^{\frac{-Q}{R(800+273)}}}{C\times e^{\frac{-Q}{R(700+273)}}}

\frac{1\%}{5.5 \times 10^{-2}\%} = e^{[\frac{-Q}{R(800+273)}] -[\frac{-Q}{R(800+273)}]}

\frac{0.01}{5.5\times 10^{-4}} = ln [e^{\frac{Q}{8.314}[\frac{1}{1073} - \frac{1}{973}]}]

solving for Q we get

Q = 251.758 kJ/mol

b) creep rate at 500 degree C

we know

C = \epsilon e^{\frac{Q}{RT}}

    =- 1\% e{\frac{251758}{8.314(500+273}} = 1.804 \times 10^{12} \% per hr

\epsilon_{500} = C e^{\frac{Q}{RT}}

                         = 1.804 \times 10^{12}  e{\frac{251758}{8.314(500+273}}

                         = 1.751 \times 10^{-5} \% per hr

4 0
3 years ago
Water exiting the condenser of a power plant at 45 Centers a cooling tower with a mas flow rate of 15,000 kg/s. A stream of cool
MariettaO [177]

Answer: hello your question is incomplete below is the missing part

question :Determine the temperature of the cooled water exiting the cooling tower

answer : T  = 43.477° C

Explanation:

Temp of water at exit = 45°C

mass flow rate of cooling tower = 15,000 kg/s

Temp of makeup water = 20°C

Assuming an atmospheric pressure of = 101.3 kPa

<u>Determine temperature of the cooled water exiting the cooling tower</u>

Water entering cooling tower at 45°C

Given that Latent heat of water at 45°C = 43.13 KJ/mol

Cp(wet air) = 1.005+ 1.884(y1)

where: y1 - Inlet mole ratio = (0.01257) / (1 - 0.01257) = 0.01273

Hence : Cp(wet air) = 29.145 +  (0.01273) (33.94) = 29.577 KJ/kmol°C

<u>First step : calculate the value of Q </u>

Q = m*Cp*(ΔT) + W(latent heat)

Q = 321.6968 (29.577) (40-30) +  43.13 (18.26089)

Q =  95935.8547 KJ/s

Given that mass rate of water = 15000 kg/s

<u>Hence the temperature of the cooled water can be calculated using the equation below</u>

Q = m*Cp*∆T

Cp(water) = 4.2 KJ/Kg°C

95935.8547 = (15000)*(4.2)*(45 - T)

( 45 - T ) = 95935.8547/ 63000.    ∴ T  = 43.477° C

5 0
3 years ago
Two sites are being considered for wind power generation. On the first site, the wind blows steadily at 7 m/s for 3000 hours per
kirill [66]

Solution :

Given :

$V_1 = 7 \ m/s$

Operation time, $T_1$ = 3000 hours per year

$V_2 = 10 \ m/s$

Operation time, $T_2$ = 2000 hours per year

The density, ρ = $1.25 \ kg/m^3$

The wind blows steadily. So, the K.E. = $(0.5 \dot{m} V^2)$

                                                             $= \dot{m} \times 0.5 V^2$

The power generation is the time rate of the kinetic energy which can be calculated as follows:

Power = $\Delta \ \dot{K.E.} = \dot{m} \frac{V^2}{2}$

Regarding that $\dot m \propto V$. Then,

Power $ \propto V^3$ → Power = constant x $V^3$

Since, $\rho_a$ is constant for both the sites and the area is the same as same winf turbine is used.

For the first site,

Power, $P_1= \text{const.} \times V_1^3$

            $P_1 = \text{const.} \times 343 \ W$

For the second site,

Power, $P_2 = \text{const.} \times V_2^3 \ W$

           $P_2 = \text{const.} \times 1000 \ W$

5 0
3 years ago
Other questions:
  • When choosing a respirator for your job, you must conduct a _____ test.
    15·1 answer
  • On a hot summer day, a student turns his fan on when he leaves his room in the morning. When he returns in the evening, will the
    5·1 answer
  • Opposition to current flow, restricts or resists current flow
    15·1 answer
  • The distribution of SAT scores of all college-bound seniors taking the SAT in 2014 was approximately normal with mean μ=1497 and
    12·1 answer
  • Coving is a curved edge between a floor and a wall.<br> O True<br> O False
    13·2 answers
  • Please help I am give brainiliest
    9·1 answer
  • How could increasing the budget for testing have prevented the problem experienced by the mars orbiter?
    7·1 answer
  • Could you please answer this question clearly?
    11·1 answer
  • Integrated circuits typically are mounted on ________, which are then plugged into the system board.
    6·1 answer
  • How many and what type of<br> receptacles are connected to<br> this circuit?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!