Answer:
25.907°C
Explanation:
In Exercise 102, heat capacity of bomb calorimeter is 6.660 kJ/°C
The heat of combustion of benzoic acid is equivalent to the total heat energy released to the bomb calorimeter and water in the calorimeter.
Thus:

= heat of combustion of benzoic acid
= heat energy released to water
= heat energy released to the calorimeter
Therefore,
![-m_{combust}*H_{combust} = [m_{water}*c_{water} + C_{calori}]*(T_{f} - T_{i})](https://tex.z-dn.net/?f=-m_%7Bcombust%7D%2AH_%7Bcombust%7D%20%3D%20%5Bm_%7Bwater%7D%2Ac_%7Bwater%7D%20%2B%20C_%7Bcalori%7D%5D%2A%28T_%7Bf%7D%20-%20T_%7Bi%7D%29)
1.056*26.42 = [0.987*4.18 + 6.66](
- 23.32)
27.8995 = [4.12566+6.660](
- 23.32)
(
- 23.32) = 27.8995/10.7857 = 2.587
= 23.32 + 2.587 = 25.907°C
Answer:
2
Explanation:
1. The dew is formed when the water vapor at the atmosphere contacts the leaves, which are at a low temperature, so, the vapor temperature decreases, and the liquid is formed. So, it's a gas to liquid change.
2. Ice cubes are at the solid-state, thus this transformation is solid to a liquid change.
3. The cold juice is at a low temperature, so when the water vapor of the air contacts with the glass, its temperature decreases, and its change to a liquid phase. So, it's a gas to liquid change.
4. The evaporated water from the Earth's surface goes to the atmosphere, and, at high altitudes, the temperature is low, so the water vapor condenses and the drops get closer together forming the clouds. So, it's a gas to a liquid change.
Answer:
Reactant concentration, the physical state of the reactants, and surface area, temperature, and the presence of a catalyst are the four main factors that affect reaction rate.
Explanation:
Actually, that does not happen until the protostar becomes a star when nuclear ignition starts and is maintained. It takes awhile for new star to go through its T-Tauri stage and settle down on the main sequence.
<span>A STAR does not reach hydrostatic equilibrium until it on the main sequence. Otherwise, it would remain a brown dwarf with not enough mass to to maintain nuclear fusion for more than 3,000 to 10,00 years. </span>
To answer this problem, we must make assumptions for simplicity. The first assumption is that, the system only consist of these 3 gases. The second assumption is that, these gases behave ideally. Thus, from Dalton's Law of Partial Pressure, the total pressure is simply the sum of their individual partial pressures.
Total pressure = 2.5 + 0.8 + 3.4 = <em>6.7 atm</em>