Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.
The salt is a solid compound and is considered the "Solute" of the solution.
Answer:
You may need better soil and a more plentiful amount of water coming from another source, and maybe find another way to contain the rain water
Explanation:you may need to draw it on paper sorry bout how it looks
Answer: 1.9 x 10²⁴ molecules Na
Explanation: To solve for the molecules of Na, we will use the Avogadro's number.
3.2 moles Na x 6.022 x10²³ molecules Na/ 1 mole Nà
= 1.9 x 10²⁴ molecules Na