Answer:
-0.00152 V
Explanation:
Parameters given:
Diameter of the loop = 11 cm = 0.11m
Rate of change of magnetic field, dB/dt = 0.16 T/s
Radius of the loop = 0.055m
The area of the loop will be:
A = pi * r²
A = 3.142 * 0.055²
A = 0.0095 m²
The EMF induced in a loop of wire due to the presence of a changing magnetic field, dB, in a time interval, dt, is given as:
EMF = - N * A * dB/dt
In this case, there's only one loop, so N = 1.
Therefore:
EMF = -1 * 0.0095 * 0.16
EMF = -0.00152 V
The negative sign indicates that the current flowing through the loop acts opposite to the change in the magnetic field.
Expand each vector into their component forms:

Similarly,


Then assuming the resultant vector
is the sum of these three vectors, we have


and so
has magnitude

and direction
such that

To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is

Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,


Therefore the correct answer is C.
Answer:
See the explanation below
Explanation:
The pressure is defined as the product of the density of the liquid by the gravitational acceleration by the height, and can be easily calculated by means of the following equation.

where:
Ro = density of the fluid [kg/m³]
g = gravity acceleration = 9.81 [m/s²]
h = elevation [m]
In this way we can understand that the greater pressure is achieved by means of the height of the liquid, that is, as long as the fluid has more height, greater pressure will be achieved at the bottom.
Therefore in order of decreasing will be
The largest pressure with the largest height of the liquid, container B. The next is obtained with container D, the next with container A and the lowest pressure with container C.
The pressure decreases as we go from the container B - D - A - C
Well I think B hope this helps