Density d=m/V
mass m=d.V=13.5×5=67.5g
m=67.5g
hope this helps you
The average time that it takes for the car to travel the first 0.25m is 2.23 s
The average time that it takes for the car to travel the first 0.25 m is given by:

The average time to travel just between 0.25 m and 0.50 m is 0.90 s
First of all, we need to calculate the time the car takes in each trial to travel between 0.25 m and 0.50 m:

Then, the average time can be calculated as

Given the time taken to travel the second 0.25 m section, the velocity would be 0.28 m/s
The velocity of the car while travelling the second 0.25 m section is equal to the distance covered (0.25 m) divided by the average time (0.90 s):

The top pair of pliers failed to loosen a stubborn bolt, but the bottom pair successfully removed it. Because the contact between the bolt and the pliers working surface is less.
<h3>What is mechanical advantage ?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system, it is used to obtained efficiency of the given mechanical machine.
The efficiency to open the stubborn bolt depends upon the contact between the working surface of the pliers and the bolt.
The contact between the bolt and the top pair of pliers working surface is less. Its mechanical advantage is less.
Hence, the top pair of pliers failed to loosen a stubborn bolt, but the bottom pair successfully removed it.
To learn more about the mechanical advantage, refer to the link;
brainly.com/question/7638820
#SPJ1
They would be likely to be underweight. This is because the role of villi is to increase absorption of soluble molecules, they do this by increasing surface area for absorption to occur across.
If the person has less villi than normal in their small intestine, then the surface area will not be as large meaning there is less area for absorption to occur across so less soluble molecules will be absorbed.
Answer:
Wavelength, 
Explanation:
It is given that,
Velocity of an electron, 
Mass of an electron, 
We need to find the wavelength of an electron. It can be calculated using the De- Broglie wavelength as :



So, the wavelength of an electron is
. Hence, this is the required solution.