Factors that influence general adaptation syndrome include that of a person’s health, nutrition, sex, ages, race, socioeconomic status, and genetics. These are factors that are either can precipitate a different reaction, while others are modifiable and unmodifiable traits.
In biology, adaptation has 3 related meanings. Firstly, it is the dynamic evolutionary process that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each organism, that is maintained and has evolved through natural selection. Historically, adaptation has been described from the time of the ancient Greek philosophers such as Empedocles and Aristotle. In 18th and 19th century natural theology, adaptation was taken as evidence for the existence of a deity. Charles Darwin proposed instead that it was explained by natural selection. Adaptation is related to biological fitness, which governs the rate of evolution as measured by a change in gene frequencies. Often, two or more species co-adapt and co-evolve as they develop adaptations that interlock with those of the other species, such as with flowering plants and pollinating insects. In mimicry, species evolve to resemble other species; in Müllerian mimicry, this is a mutually beneficial co-evolution as each of a group of strongly defended species (such as wasps able to sting) come to advertise their defenses in the same way. Features evolved for one purpose may be co-opted for a different one, as when the insulating feathers of dinosaurs were co-opted for bird flight. Adaptation is a major topic in the philosophy of biology, as it concerns function and purpose (teleology). Some biologists try to avoid terms that imply purpose in adaptation, not least because it suggests a deity's intentions, but others note that adaptation is necessarily purposeful.
The answer would be Rutherford inferred the existence of a dense, positively charged nucleus.
N = given mass/ molar mass.
n = number of moles
given mass = 2.47 g
molar mass = 197 g/mol
n = 2.47 / 197
n = 0.01253 moles.
I'm sure you wanted to ask more than this. Just put some comments in. I can do the same.
Answer:
Explanation:
There are three types of interactions involved between the particles when solution are formed.
1 : Solute - solute interaction:
2 : Solute - solvent interaction:
3 : Solvent - solvent interaction:
1 : Solute - solute interaction:
It is the inter-molecular attraction between the solute particles.
2 : Solute - solvent interaction:
It involve the inter-molecular attraction between solvent and solute particles.
3 : Solvent - solvent interaction:
It involve the intermolecular attraction between solvent particles.
Solutions are formed if the intermolecular attraction between solute particles are similar to the attraction between solvent particles.
Exothermic process:
The process will exothermic when solute solvent bonds are formed with the release of energy and energy required to brake the solute-solute particles and solvent solvent particles are less.
Endothermic process:
The process will be endothermic when energy required to break the solute-solute particles and solvent solvent particles are higher than energy released when solute solvent bonds are formed .