So the acceleration has actually slowed down the ball because it was going in the direction opposite the velocity. Now see what happens as the ball falls back down to Earth. The ball has zero velocity, but the acceleration due to gravity accelerates the ball downward at a rate of –9.8 m/s2.
hope it helps
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
Note: This question is incomplete and lacks very important data to solve this question. But I have found the similar question which shows the profiles about which question discusses. Using the data from that question, I have solved the question.
a) We need to find the major species from A to F.
Major Species at A:
1. 
Major Species at B:
1. 
2. 
Major Species at C:
1. 
Major Species at D:
1. 
2. 
Major Species at E:
1. 
Major Species at F:
1. 
b) pH calculation:
At Halfway point B:
pH = pK
+ log[
]/[H
]
pH = pK
= 6.35
Similarly, at halfway point D.
At point D,
pH = pK
+ log [H
]/[H2
]
pH = pK
= 10.33
The orbitals closest to the nucleus is the orbital wih the lowest energy. This is according to the basic rules stating that the energy of the shells as its principal quantum number increases, also increases. Thus the answer in 1 is B. Valence electrons are found in the outermost electron shell, on the other hand.
<span>The force of a system can be measured by formula P=mf where P is the force, m is the mass of the system and f is the acceleration of the system. The formula is known as Newton's second law of motion.</span>