1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenaWriter [7]
3 years ago
12

Resistors 1 and 2− R1 = 50 Ω , R2 = 90 Ω − are connected in series to a 6.0-V battery. Part APart complete What is the potential

difference across resistor 1? Express your answer with the appropriate units. V1 = 2.1 V Previous Answers Correct Part BPart complete If you decrease the value of R1 what happens to the current in the circuit? Current in the circuit decreases. Current in the circuit increases. Current in the circuit stays the same. Previous Answers Correct Part CPart complete If you decrease the value of R1 what happens to the potential difference across resistor 1? Potential difference across resistor 1 decreases. Potential difference across resistor 1 stays the same. Potential difference across resistor 1 increases.
Physics
1 answer:
kondor19780726 [428]3 years ago
4 0

Answer:

Part A: The voltage across resistor R1 is approximately \rm 2.1 \; V.

Part B: When the value of resistor R1 decreases, the current in this circuit will increase.

Part C: When the value of resistor R1 decreases, the voltage across resistor R1 will decrease.

Explanation:

<h3>Part A</h3>

Resistor R1 and and R2 are connected in series. That's equivalent to a single resistor of R_1 + R_2 = 50 + 90 = 140\; \Omega. The voltage across the two resistor, combined, is equal to \rm 6\; V. Hence by Ohm's Law, the current through the circuit will be equal to \rm \dfrac{6\; V}{140\; \Omega} = \dfrac{3}{70}\; A.

These two resistors are connected in series. The voltage across each of them might differ. However, the current through each of them should both be equal to the current through the circuit. In this case, the current through both R1 and R2 should be equal to \rm \dfrac{3}{70}\; A. Apply Ohm's Law (again) to find the voltage across R1:

V = I \cdot R = \dfrac{3}{70} \times 50 \approx \rm 2.1\; V.

<h3>Part B</h3>

Since the equivalent resistance is equal to R_1 + R_2, when the value of R_1 decreases, the equivalent resistance will also decrease. By Ohm's Law, I = \dfrac{V}{R}. When the value of the denominator ( decreases, the value of the quotient, I the current through the circuit, will increase.

<h3>Part C</h3>

Keep in mind that if two resistors are connected in series,

I(R_1) = I(\text{Circuit}) = I(R_2).

The resistance of R1 decreases, while the current through it increases. Applying Ohm's Law on R1 won't give much useful information. However, since the resistance of R2 stays the same, the voltage across it will increase when its current increases (again by Ohm's Law.)

Again, since the two resistors are connected in series,

V(R_1) + V(R_2) = V(\text{Circuit}) = \rm 6 \; V,

when the voltage across R2 increases, the voltage across R1 will decrease.

You might be interested in
An aluminum bar 600mm long, with diameter 40mm, has a hole drilled in the center of the bar. The hole is 40mm in diameter and 10
s2008m [1.1K]

Answer:

<em>1.228 x </em>10^{-6}<em> mm </em>

<em></em>

Explanation:

diameter of aluminium bar D = 40 mm  

diameter of hole d = 30 mm

compressive Load F = 180 kN = 180 x 10^{3} N

modulus of elasticity E = 85 GN/m^2  = 85 x 10^{9} Pa

length of bar L = 600 mm

length of hole = 100 mm

true length of bar = 600 - 100 = 500 mm

area of the bar A = \frac{\pi D^{2} }{4} =  \frac{3.142* 40^{2} }{4} = 1256.8 mm^2

area of hole a = \frac{\pi(D^{2} - d^{2}) }{4} = \frac{3.142*(40^{2} - 30^{2})}{4} = 549.85 mm^2

Total contraction of the bar = \frac{F*L}{AE} + \frac{Fl}{aE}

total contraction = \frac{F}{E} * (\frac{L}{A} +\frac{l}{a})

==> \frac{180*10^{3}}{85*10^{9}} *( \frac{500}{1256.8} + \frac{100}{549.85}) = <em>1.228 x </em>10^{-6}<em> mm </em>

6 0
3 years ago
Four complete waves pass the duck in one second the frequency of this wave is
galben [10]
The frequency of a wave is the number of complete oscillations passing a given point per second.

In this case, assuming the duck is stationary, we have 4 complete waves passing the duck in one second: therefore, the frequency of the wave is
f= \frac{4}{1 s}=4 Hz
3 0
3 years ago
How is air temperature related to high and low pressure air
vitfil [10]

Answer: So, I looked at it to see what was the correct one, and the correct answer is Cool air near surface forms high-pressure areas, warm air forms low pressure areas. I hope this helps :D :)

Explanation:

3 0
2 years ago
How can juggling improve your hand eye coordination?​
Ne4ueva [31]

Answer:

you can predict where the juggling ball is going to land and the move you hand to catch it

Explanation:

5 0
3 years ago
Read 2 more answers
Which is not a common property of ionic compounds?
Dmitriy789 [7]

Answer:

low melting point

Ionic compounds have high melting and boiling points. This is because a considerable amount of energy is required to break the strong inter-ionic attraction

Explanation:

8 0
2 years ago
Other questions:
  • Where are mid-ocean ridges formed?
    15·1 answer
  • When an electric current flows through a long conductor, each free electron moves
    14·2 answers
  • Which subatomic particles have an electrical charge?
    11·2 answers
  • A 1.50-kg iron horseshoe initially at 550°C is dropped into a bucket containing 25.0 kg of water at 20.0°C. What is the final te
    11·2 answers
  • suppose 384g of steam originally at 100C is quickly cooled to produce liquid water at 31C. How much heat must be removed from th
    13·1 answer
  • Consider the circuit. Switches are added at points A, B, C, and D. All the switches are closed EXCEPT the switch at position D,
    14·2 answers
  • Earth orbits the sun once every
    14·1 answer
  • A drill has a density of 11.342 g/cm3. Its mass is 1500 g. What is the volume of the drill? Round to TWO decimal places.
    6·1 answer
  • A bumper car with a mass of 86 kg is traveling at 3.6
    12·1 answer
  • Assume a 4.094 mhz clock is used as the system clock and the systick selects it as the clock. What should the systick_load regis
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!