Answer:
He needs 1.53 seconds to stop the car.
Explanation:
Let the mass of the car is 1500 kg
Speed of the car, v = 20.5 m/s
He will not push the car with a force greater than, 
The impulse delivered to the object is given by the change in momentum as :

So, he needs 1.53 seconds to stop the car. Hence, this is the required solution.
i thinkits an instrument called seismograph. not sure
An object in motion will continue to move in the same direction and with the same speed unless acted upon by an unbalanced force. states that forces occur as equal and opposite pairs. The strength of the force is related to the mass of the objects and the distance between them.
Answer:
the velocity of the bullet-wood system after the collision is 2.48 m/s
Explanation:
Given;
mass of the bullet, m₀ = 20 g = 0.02 kg
velocity of the bullet, v₀ = 250 m/s
mass of the wood, m₁ = 2 kg
velocity of the wood, v₁ = 0
Let the velocity of the bullet-wood system after collision = v
Apply the principle of conservation of linear momentum to calculate the final velocity of the system;
Initial momentum = final momentum
m₀v₀ + m₁v₁ = v(m₀ + m₁)
0.02 x 250 + 2 x 0 = v(2 + 0.02)
5 + 0 = v(2.02)
5 = 2.02v
v = 5/2.02
v = 2.48 m/s
Therefore, the velocity of the bullet-wood system after the collision is 2.48 m/s