On a large scale, no. Sound travels through space by the compression and relaxation of molecules. When you speak to someone on Earth, each inflection of voice compresses local molecules, and relaxes the molecules around the compressed ones. In space, however, the large lack of molecules means that the compression waves can’t be transmitted from the sound to the listener.
If the impulse is 25 N-s, then so is the change in momentum.
The mass of the ball is extra, unneeded information.
Just to make sure, we can check out the units:
<u>Momentum</u> = (mass) x (speed) = <u>kg-meter / sec</u>
<u>Impulse</u> = (force) x (time) = (kg-meter / sec²) x (sec) = <u>kg-meter / sec</u>
<span>the answer is - resonance
</span>
This link should help you out https://quizlet.com/40330134/biomechanics-questions-flash-cards/
The three parts of the ear anatomy are the outer ear, the middle ear
and the inner ear. The inner ear is also called the cochlea. (‘Cochlea’
means ‘snail’ in Latin; the cochlea gets its name from its distinctive
coiled up shape.)
The outer ear consists of the pinna, ear canal and eardrum
The middle ear consists of the ossicles (malleus, incus, stapes) and ear drum
The inner ear consists of the cochlea, the auditory (hearing) nerve and the brain
Sound waves enter the ear canal and make the ear drum vibrate. This
action moves the tiny chain of bones (ossicles – malleus, incus, stapes)
in the middle ear. The last bone in this chain ‘knocks’ on the membrane
window of the cochlea and makes the fluid in the cochlea move. The
fluid movement then triggers a response in the hearing nerve.
or
<span>Sound waves enter the ear canal and make the ear drum vibrate. This action moves the tiny chain of bones (ossicles – malleus, incus, stapes) in the middle ear. The last bone in this chain 'knocks' on the membrane window of the cochlea and makes the fluid in the cochlea move.
please mark me as brainliest!!
</span>