Answer:
1) D
2) A
Explanation:
1) Each group has the same number of valence electrons, which are the outer electrons.
2) Ionic bonds are between a metal and non - metal, the metal being sodium and the non - metal being chlorine.
Here we can say that there is no external torque on this system
So here we can say that angular momentum is conserved
so here we will have

now we have



similarly let the final distance is "r"
so now we have


now from above equation we have


so final distance is 0.04 m between them
1750 meters.
First, determine how long it takes for the kit to hit the ground. Distance over constant acceleration is:
d = 1/2 A T^2
where
d = distance
A = acceleration
T = time
Solving for T, gives
d = 1/2 A T^2
2d = A T^2
2d/A = T^2
sqrt(2d/A) = T
Substitute the known values and calculate.
sqrt(2d/A) = T
sqrt(2* 1500m / 9.8 m/s^2) = T
sqrt(3000m / 9.8 m/s^2) = T
sqrt(306.122449 s^2) = T
17.49635531 s = T
Rounding to 4 significant figures gives 17.50 seconds. Since it will take
17.50 seconds for the kit to hit the ground, the kit needs to be dropped 17.50
seconds before the plane goes overhead. So just simply multiply by the velocity.
17.50 s * 100 m/s = 1750 m
Explanation:
Pressure is the same for both plungers.
P = P
F / A = F / A
F / (¼ π d²) = F / (¼ π d²)
F / d² = F / d²
5 N / (0.05 m)² = F / (1 m)²
F = 2000 N
None of the options are correct.