Explanation:
A.
H = Aeσ^4
Using the stefan Boltzmann law
When we differentiate
dH/dT = 4AeσT³
dH/dT = 4(0.15)(0.9)(5.67)(10^-8)(650)³
= 8.4085
Exact error = 8.4085x20
= 168.17
H(650) = 0.15(0.9)(5.67)(10^-8)(650)⁴
= 1366.376watts
B.
Verifying values
H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(670)⁴
= 1542.468
H(T+ΔT) = 0.15(0.9)(5.67)(10^-8)(630)⁴
= 1205.8104
Error = 1542.468-1205.8104/2
= 168.329
ΔT = 40
H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(690)⁴
= 1735.05
H(T-ΔT) = 0.15(0.9)(5.67)(10^-8)(610)⁴
= 1735.05-1059.83/2
= 675.22/2
= 337.61
Answer:
Enthalpy at outlet=284.44 KJ
Explanation:


We need to Find enthalpy of outlet.
Lets take the outlet mass m and outlet enthalpy h.
So from mass conservation

m=1+1.5+2 Kg/s
m=4.5 Kg/s
Now from energy conservation

By putting the values

So h=284.44 KJ
Answer: a) 135642 b) 146253
Explanation:
A)
1- the bankers algorithm tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, as stated this has the greatest degree of concurrency.
3- reserving all resources in advance helps would happen most likely if the algorithm has been used.
5- Resource ordering comes first before detection of any deadlock
6- Thread action would be rolled back much easily of Resource ordering precedes.
4- restart thread and release all resources if thread needs to wait, this should surely happen before killing the thread
2- only option practicable after thread has been killed.
Bii) ; No. Even if deadlock happens rapidly, the safest sequence have been decided already.
Answer:
pipefitters design systems whereas plumbers maintain systems
Answer:

Explanation:
Cold water in: 
Hot water in: 

Step 1: Determine the rate of heat transfer in the heat exchanger




Step 2: Determine outlet temperature of hot water



Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)










Step 4: Determine required surface area of heat exchanger



Step 5: Determine length of heat exchanger


