1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Molodets [167]
3 years ago
9

This is just so I can flip the picture

Engineering
1 answer:
Pepsi [2]3 years ago
7 0

Answer:

ok

Explanation:

thx for points

You might be interested in
The Stefan-Boltzmann law can be employed to estimate the rate of radiation of energy H from a surface, as in
Mazyrski [523]

Explanation:

A.

H = Aeσ^4

Using the stefan Boltzmann law

When we differentiate

dH/dT = 4AeσT³

dH/dT = 4(0.15)(0.9)(5.67)(10^-8)(650)³

= 8.4085

Exact error = 8.4085x20

= 168.17

H(650) = 0.15(0.9)(5.67)(10^-8)(650)⁴

= 1366.376watts

B.

Verifying values

H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(670)⁴

= 1542.468

H(T+ΔT) = 0.15(0.9)(5.67)(10^-8)(630)⁴

= 1205.8104

Error = 1542.468-1205.8104/2

= 168.329

ΔT = 40

H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(690)⁴

= 1735.05

H(T-ΔT) = 0.15(0.9)(5.67)(10^-8)(610)⁴

= 1735.05-1059.83/2

= 675.22/2

= 337.61

5 0
3 years ago
A direct contact heat exchanger (where the fluid mixes completely) has three inlets and one outlet. The mass flow rates of the i
lara31 [8.8K]

Answer:

Enthalpy at outlet=284.44 KJ

Explanation:

m_1=1 Kg/s,m_2=1.5 Kg/s,m_3=22 Kg/s

h_1=100 KJ/Kg,h_2=120 KJ/Kg,h_3=500 KJ/Kg

We need to Find enthalpy of outlet.

Lets take the outlet mass m and outlet enthalpy h.

So from mass conservation

m_1+m_2+m_3=m

   m=1+1.5+2 Kg/s

  m=4.5 Kg/s

Now from energy conservation

m_1h_1+m_2h_2+m_3h_3=mh

By putting the values

1\times 100+1.5\times 120+2\times 500=4.5\times h

So h=284.44 KJ

4 0
3 years ago
This problem has been solved!
lisov135 [29]

Answer: a) 135642 b) 146253

Explanation:

A)

1- the bankers algorithm tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, as stated this has the greatest degree of concurrency.

3- reserving all resources in advance helps would happen most likely if the algorithm has been used.

5- Resource ordering comes first before detection of any deadlock

6- Thread action would be rolled back much easily of Resource ordering precedes.

4- restart thread and release all resources if thread needs to wait, this should surely happen before killing the thread

2- only option practicable after thread has been killed.

Bii) ; No. Even if deadlock happens rapidly, the safest sequence have been decided already.

5 0
3 years ago
What are the main differences between pipefitters and plumbers? (Select all that apply.)
romanna [79]

Answer:

pipefitters design systems whereas plumbers maintain systems

8 0
3 years ago
A counter-flow double pipe heat exchanger is heat heat water from 20 degrees Celsius to 80 degrees Celsius at the rate of 1.2 kg
lakkis [162]

Answer:

L=107.6m

Explanation:

Cold water in: m_{c}=1.2kg/s, C_{c}=4.18kJ/kg\°C, T_{c,in}=20\°C, T_{c,out}=80\°C

Hot water in: m_{h}=2kg/s, C_{h}=4.18kJ/kg\°C, T_{h,in}=160\°C, T_{h,out}=?\°C

D=1.5cm=0.015m, U=649W/m^{2}K, LMTD=?\°C, A_{s}=?m^{2},L=?m

Step 1: Determine the rate of heat transfer in the heat exchanger

Q=m_{c}C_{c}(T_{c,out}-T_{c,in})

Q=1.2*4.18*(80-20)

Q=1.2*4.18*(80-20)

Q=300.96kW

Step 2: Determine outlet temperature of hot water

Q=m_{h}C_{h}(T_{h,in}-T_{h,out})

300.96=2*4.18*(160-T_{h,out})

T_{h,out}=124\°C

Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)

dT_{1}=T_{h,in}-T_{c,out}

dT_{1}=160-80

dT_{1}=80\°C

dT_{2}=T_{h,out}-T_{c,in}

dT_{2}=124-20

dT_{2}=104\°C

LMTD = \frac{dT_{2}-dT_{1}}{ln(\frac{dT_{2}}{dT_{1}})}

LMTD = \frac{104-80}{ln(\frac{104}{80})}

LMTD = \frac{24}{ln(1.3)}

LMTD = 91.48\°C

Step 4: Determine required surface area of heat exchanger

Q=UA_{s}LMTD

300.96*10^{3}=649*A_{s}*91.48

A_{s}=5.07m^{2}

Step 5: Determine length of heat exchanger

A_{s}=piDL

5.07=pi*0.015*L

L=107.57m

7 0
3 years ago
Other questions:
  • what should be used to feed material into a machine? A.joy stick B.push stick C. your feet D. your hands​
    14·1 answer
  • The y-component of velocity for a certain 2-D flow field is given as u = 3xy + x2 . Determine the x-component of velocity if the
    12·1 answer
  • A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as
    12·1 answer
  • Explain why change is inevitable in complex systems and give examples (apart from prototyping and incremental delivery) of softw
    6·1 answer
  • PLEASE HELP!!! <br><br>I've included attachments. Can someone just check my answers pls??
    9·1 answer
  • An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and a humidifier that supplie
    15·1 answer
  • 3. (20 points) Suppose we wish to search a linked list of length n, where each element contains a key k along with a hash value
    7·1 answer
  • TWO SENTENCES!!! What is something that you have used today that was designed by an engineer? What parts were designed by an eng
    11·2 answers
  • The two types of outlets that are found in an electrical system are:______
    7·1 answer
  • What is the difference between class 1 and class 3 lever?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!