Complete question:
Consider the hypothetical reaction 4A + 2B → C + 3D
Over an interval of 4.0 s the average rate of change of the concentration of B was measured to be -0.0760 M/s. What is the final concentration of A at the end of this same interval if its concentration was initially 1.600 M?
Answer:
the final concentration of A is 0.992 M.
Explanation:
Given;
time of reaction, t = 4.0 s
rate of change of the concentration of B = -0.0760 M/s
initial concentration of A = 1.600 M
⇒Determine the rate of change of the concentration of A.
From the given reaction: 4A + 2B → C + 3D
2 moles of B ---------------> 4 moles of A
-0.0760 M/s of B -----------> x

⇒Determine the change in concentration of A after 4s;
ΔA = -0.152 M/s x 4s
ΔA = -0.608 M
⇒ Determine the final concentration of A after 4s
A = A₀ + ΔA
A = 1.6 M + (-0.608 M)
A = 1.6 M - 0.608 M
A = 0.992 M
Therefore, the final concentration of A is 0.992 M.
1. Tangential velocity:
<em>e) the instantaneous velocity of a body moving in a circular path.</em>
2. Parabolic pathway
<em>c. a curved path followed by projectiles</em>
3. Projectile
<em>d) an object projected through space, traveling in two dimensions, that accelerates vertically due to gravity.</em>
4. Centripetal acceleration
<em>a) acceleration towards the center caused by the centripetal force</em>
5. Centripetal force
<em>b) a force which keeps a body moving with a uniform speed along a circular path and is directed along the radius towards the center</em>
Answer:
42.417 cm³
Explanation:
The formula to find the volume of a cone is :
V =
× π r² h
Here,
r ⇒ radius ⇒ 3 cm
h ⇒ height ⇒ 4.5 cm
<u>Let us find it now.</u>
V =
× π r² h
V =
× π × 3 × 3 × 4.5
V =
× π × 9 × 4.5
V =
× π × 9 × 4.5
V =
× π × 40.5
V =
× 3.142 × 40.5
V =
× 127.251
V = <u>42.417 cm³</u>
The answer is D.
Hope this helps and have a good day :D
0.6 cm is the answer add it up and find the m/s hope this helps