The answer is N2 + 3H2 yields 2NH3. The oxidation-reduction reaction means that there is electrons transfer during the reaction which means that the valence changed.
In thermodynamics<span>, </span>work<span> performed by a system is the energy transferred by the system to its surroundings. It can be calculated by the expression:
</span>
W = PdV
Integrating,
We will have,
W = P(V2 - V1)
133.7 (1 litre-atm / 101.325 Joule) ( <span>760 Torr / atm ) </span>= 783 (V2 - .0737 )
V2 = 1.35 L
Hope this answers the question. Have a nice day.
Answer:
the valence electrons of atoms in a pure metal can be modeled as a sea of electrons
For an approximate result, multiply the volume value by 3.785
Answer ≈ 56.7812
The given 2.6 µC of charge is due to a buildup of electrons, each of which has a charge of 1.6 x 10^-19 C. The 2.6 <span>µC is equivalent to 2.6 x 10^-6 C, so we can divide this by the individual charge of an electron:
</span>2.6 x 10^-6 C / 1.6 x 10^-19 (C/electron) = 1.625 x 10^13 electrons