Answer:
The angular acceleration of the wheel is -6.54 rad/s²
Explanation:
We'll use the equations of motion for this.
w = 2πf
f = 75 rpm = 1.25 rps = 1.25 rev/s
w₀ = initial angular velocity = 2π × 1.25 = 7.85 rad/s
w = final angular velocity = 0 rad/s
t = 1.2 s
α = ?
w = w₀ + αt
0 = 7.85 + 1.2α
α = 7.85/1.2 = - 6.54 rad/s²
We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
It means that you consider the elements as a list organized by atomic number, the property is seen to repeat over and over as you move through that list.
Answer: Solubility
Solubility is the ability to be dissolved. Saturation is when the concentration is too high(more than solubility) that when you add another material it won't dissolve. Solute is the material that dissolved. Solvent is the material that used for dissolving