25 km/hr I hope this helps;)
To have a weight of 2.21N., the ball's mass is (2.21/9.8) = .226kg.
<span>a) d = 1/2 (vt), = 1/2 (18 x .17), = 1.53m. </span>
<span>b) Acceleration of the ball = (v/t), = 18/.17, = 105.88m/sec^2. </span>
<span>f = (ma), = .226 x 105.88, = 23.92N. </span>
I think this one's B. energy and work are both measured in joules.
Answer: 16.3 seconds
Explanation: Given that the
Initial velocity U = 80 ft/s
Let's first calculate the maximum height reached by using third equation of motion.
V^2 = U^2 - 2gH
Where V = final velocity and H = maximum height.
Since the toy is moving against the gravity, g will be negative.
At maximum height, V = 0
0 = 80^2 - 2 × 9.81 × H
6400 = 19.62H
H = 6400/19.62
H = 326.2
Let's us second equation of motion to find time.
H = Ut - 1/2gt^2
Let assume that the ball is dropped from the maximum height. Then,
U = 0. The equation will be reduced to
H = 1/2gt^2
326.2 = 1/2 × 9.81 × t^2
326.2 = 4.905t^2
t^2 = 326.2/4.905
t = sqrt( 66.5 )
t = 8.15 seconds
The time it will take for the rocket to return to ground level will be 2t.
That is, 2 × 8.15 = 16.3 seconds
Complete Question
A wave is described by y(x,t) = 0.1 sin(3x + 10t), where x is in meters, y is in centimetres and t is in seconds. The angular wave frequency is
Answer:
The value is 
Explanation:
From the question we are told that
The equation describing the wave is y(x,t) = 0.1 sin(3x + 10t)
Generally the sinusoidal equation representing the motion of a wave is mathematically represented as

Where w is the angular frequency
Now comparing this equation with that given we see that
