Answer:
Bent knees
Explanation:
Depending the height your jumping from, if you were jumping from a high structure it's best if you jump and land on knees so you dont sprang your ankles from jumping and landing on your straight legs, you could even pull a muscle if you land on straight legs.
Answer:
Second Trial satisfy principle of conservation of momentum
Explanation:
Given mass of ball A and ball B 
Let mass of ball
and
Final velocity of ball 
Final velocity of ball 
initial velocity of ball 
Initial velocity of ball 
Momentum after collision 
Momentum before collision 
Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.
Now, 
Plugging each trial in this equation we get,
First Trial

momentum before collision
moment after collision
Second Trial

moment before collision
moment after collision
Third Trial

momentum before collision
moment after collision
Fourth Trial

momentum before collision
moment after collision
We can see only Trial- 2 shows the conservation of momentum in a closed system.
The Earth’s average orbital speed expressed in kilometers per hours is 107225.5 Km/hr and the mass of the sun is 2.58 x
Kg
<h3>
Relationship between Linear and angular speed</h3>
Linear speed is the product of angular speed and the maximum displacement of the particle. That is,
V = Wr
Where
Given that the earth orbits the sun at an average circular radius of about 149.60 million kilometers every 365.26 Earth days.
a) To determine the Earth’s average orbital speed, we will make use of the below formula to calculate angular speed
W = 2
/T
W = (2 x 3.143) / (365.26 x 24)
W = 6.283 / 876624
W = 7.2 x
Rad/hr
The Earth’s average orbital speed V = Wr
V = 7.2 x
x 149.6 x 
V = 107225.5 kilometers per hours.
b) Based on the information given in this question, to calculate the approximate mass of the Sun, we will use Kepler's 3rd law
M = (4
) / G
M = (4 x 9.8696 x 3.35 x
) / (6.67 x
x 7.68 x
<em>)</em>
<em>M = 1.32 x </em>
/ 51.226
M = 2.58 x
Kg
Therefore, the Earth’s average orbital speed expressed in kilometers per hours is 107225.5 Km/hr and the mass of the sun is 2.58 x
Kg
Learn more about Orbital Speed here: brainly.com/question/22247460
#SPJ1
Answer: rp/re= me/mp= 544 * 10^-6.
Explanation: To calculate this problem we have to consider the circular movement by the electron and proton inside a magnetic field.
Then the dynamic equation for the circular movement is given by:
Fcentripetal= m*ω^2.r
q*v*B=m*ω^2.r
we write this for each particle then we have the following:
q*v*B=me* ω^2*re
q*v*B=mp* ω^2*rp
rp/re=me/mp=9.1*10^-31/1.67*10^-27=544*10^-6
Answer:

Explanation:
The potential energy (PE) we are looking here is gravitational potential energy (GPE).
GPE= mgh,
where m is the mass of an object,
g is the gravitational field strength
h is the height of the object
KE= ½mv²,
where m is the mass and v is the velocity
loss in GPE= gain in KE
mgh= ½mv²
gh= ½v² (<em>divide by m throughout</em>)
Assuming that the object is on earth, then g= 10N/Kg
½v²= 10h (<em>substitute g=10</em>)
v²= 20h (<em>×2 on both sides</em>)
v= √20h (<em>square root both sides</em>)