Hi there,
for this question we have:
Signal 2.0 MHz = Emitted so we can call it

and we need the Reflected =

In this question, we have a source which goes to the heart and a reflected which comes back from the heart and we need the speed of the reflected.
So you should know that the speed of reflected is lower than the source(Emitted).
we also know: ΔBeat frequency(max) = 560 Hz =

so we have:

-

=

so frequency of Reflected is:
2.0 × 10^6 Hz - 560 Hz = 1.99 × 10^6 Hz =

now you know that Lambda = v/f
so if we find the lambda with our Emitted then we can find v with the Reflected:
Lambda = 1540(m/s) / 2.0 × 10^6 Hz = 7.7 × 10^-4 m
=>

= (lambda)(
=> 7.7 × 10^-4m (1.99 × 10^6Hz) = 1532 m/s
so the

is equal to 1532 m/s :)))
This question is solved by two top teachers as fast as they could :))
I hope this is helpful
have a nice day
Answer:
f=171.43Hz
Explanation:
Wave frequency is the number of waves that pass a fixed point in a given amount of time.
The frequency formula is: f=v÷λ, where <em>v</em> is the velocity and <em>λ</em> is the wavelength.
Then replacing with the data of the problem,
f=
f=171.43
f=171.43 Hz (because
, 1 hertz equals 1 wave passing a fixed point in 1 second).
Answer:
Acid mine drainage is dissolved toxic materials wash from mines into nearby lakes and streams.
Explanation:
Acid mine drainage is the flow of acidic water with pH typically between 2 and 4, and high concentrations of other dissolved toxic materials from mines into nearby lakes and streams. It mainly occurs during metal sulfide mining, when the metal sulfide ore such as pyrite (FeS2) is exposed to water and oxygen from air to produce soluble iron and sulfuric acid.
Microorganisms, especially acidophile bacteria like Acidithiobacillus ferrooxidans grow by pyrite oxidation, i.e., oxidizing the Fe²⁺ in pyrite to Fe³⁺, which again react with pyrite and water to produce sulfuric acid. Then the acidic water flows into nearby water sources and reduces the pH value of water in those sources. As a result, heavy metals such as copper, lead, mercury, etc in other mineral ores also get dissolved into the water. The action of acidophile bacteria also increases the rate and degree of acid-mine drainage process.
The acid mine drainage causes water pollution and adversely affect the aquatic plants and animals. It also results in the contamination of drinking water, corrosion of infrastructures such as bridges, etc.