To solve this question you need to calculate the number of the gas molecule. The calculation would be:
PV=nRT
n=PV/RT
n= 1 atm * 40 L/ (0.082 L atm mol-1K-<span>1 * 298.15K)
</span>n= 1.636 moles
The volume at bottom of the lake would be:
PV=nRT
V= nRT/P
V= (1.636 mol * 277.15K* 0.082 L atm mol-1K-1 )/ 11 atm= <span>3.38 L</span>
213034 torr is the osmotic pressure.
Explanation:
osmotic pressure is calculated by the formula:
osmotic pressure= iCrT
where i= no. of solute
c= concentration in mol/litre
R= Universal Gas constant
T = temp
It is given that solution is 3% which is 3gms in 100 ml.
let us calculate the concentration in moles/litre
3gm/100ml*1000ml/1L*1mol NaCl/55.84g NaCl
= 5.372 gm/litre
Putting the values in the formula, Temp in Kelvin 318.5K
osmotic pressure= 2*5.372*0.083 * 318.5 Gas constant 0.083
= 284.023 bar or 213018 torr. c= 5.372 moles/L
i=2 for NaCl
Answer:
Magnesium dichloride
HoPe ThIs HeLpS! aNd HaVe A gOoD dAy!
<h2>Answer:</h2>
Option D is correct. It is independent of the reaction pathway.
<h2>Explanations:</h2><h2>What is Hess's law?</h2>
Hesslaw states that the enthalpy change of a reaction does not change regardless whether the reaction takes place in a single or multiple reaction pathways.
This shows that the total entalpy change of a reaction does not depend on the reaction pathway.