The right hand rule to find the direction of the magnetic field for a falling bar is:
- The charge is positive the magnetic field is outgoing, horizontally and towards us.
- The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
The magnetic force is given by the vector product of the velocity and the magnetic field.
F = q v x B
Where the bolds indicate vectors, F is the force, q the charge on the particle, v the velocity and B the magnetic field.
In the vector product, the vectors are perpendicular, which is why the right-hand rule has been established, see attached:
- The thumb points in the direction of speed.
- Fingers extended in the direction of the magnetic field.
- The palm is in the direction of the force if the charge is positive and in the opposite direction if the charge is negative.
They indicate that the bar is dropped, therefore its speed is vertical and downwards, it moves to the left therefore this is the direction of the force, we use the right hand rule, the magnetic field must be horizontal, we have two possibilities:
- If the charge is positive the magnetic field is outgoing, horizontally and towards us.
- If the charge of the bar is negative, the magnetic field is incoming, that is, horizontal away from us
In conclusion using the right hand rule we can find the direction of the magnetic field for a falling bar is:
- The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
- The charge is positive the magnetic field is outgoing, horizontally and towards us.
Learn more about the right hand rule here: brainly.com/question/12847190
Answer:
Explanation:
We shall apply law of conservation of momentum in space to know the velocity of combination after the impact
m₁v₁ = m₂v₂
.1 x 4 = ( 1 + .1 ) v₂
v₂ = .3636 m /s
1 )
Kinetic energy of the combination
= 1/2 x 1.1 x ( .3636)²
= 7.3 x 10⁻² J
2 )
Initial kinetic energy of the system
= 1/2 x 0.1 x 4²
= 0.8 J
Final kinetic energy of the system = 7.3 x 10⁻²
Loss of energy = .8 - .073
= .727 J
This energy was converted into internal energy of the system .
3 )
increase in entropy = dQ / T
Here dQ = .727 J
T = 300 ( Constant )
dQ / T = 2.42 X 10⁻³ J/K
Answer:
97% will sink below the water
Explanation:
Waters density is 1 g/cm3
If an object's density is greater than 1g/cm3, it will sink. If it's less then it would float. 1-0.97 = 0.03. Only 3% of the ice would show while 97 will be under.
Answer:
the total cross-sectional area of the capillaries is greater than the total cross-sectional area of the arteries or any other part of the circulatory system.
Explanation:
Blood velocity is not the same in all areas. In the capillaries it is where there is less speed, while in arteries and veins it is quite similar. This is due to the cross-sectional area of each of the vessels. It is a mistake to think of a vein, artery or capillary individually. We have to put them all together to see that the total area of the capillaries is 100 times larger than that of the arteries or veins. Blood flowing through arteries or veins is going faster because there is less area.
Blood velocity is inversely proportional to each of the areas of its territories. The greater the area, the lower the speed.
Answer:
most evaporation and precipitation in the water cycle occus over the ocean