Answer:
Mass of the salt: 105.6g of KCl.
Mass water: 958.9g of water.
Molality: 1.478m.
Explanation:
<em>Mass of the salt:</em>
In 1L, there are 1.417 moles. In grams:
1.417 moles KCl * (74.54g / mol) = 105.6g of KCl
<em>Mass of the water:</em>
We can determine the mass of solution (Mass of water + mass KCl) by multiplication of the voluome (1L and density 1064.5g/L), thus:
1L * (1064.5g / L) = 1064.5g - Mass solution.
Mass water = 1064.5g - 105.6g = 958.9g of water
<em>Molality:</em>
Moles KCl = 1.417 moles KCl.
kg Water = 958.9g = 0.9589kg.
Molality = 1.417mol / 0.9589kg = 1.478m
Answer:
H-BI,H-Se,H-S,H-I,H-Br
Explanation:
One thing that must be kept in mind is that atomic size increases down the group and decreases across the period. The bond lengths of species are influenced by the relative sizes of atoms or ions present in the bond.
The bonds in the answer have been arranged on basis of their decreasing atomic size because the greater the atomic size of the atoms, the greater the bond length and vice versa.
Answer:
When an atom of sodium and an atom of fluorine combine to form the salt, sodium fluoride, an ionic bond, is formed.
Explanation:
Answer:
Agree this is correct if it not blame me
Elements have neutral charges such as Na so if X has 72 protons + charges then it must also have 72 electrons with - charges
hope that helps