A molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
The bonding orbital, which would be more stable and encourages the bonding of the two H atoms into
, is the orbital that is located in a less energetic state than just the electron shells of the separate atoms. The antibonding orbital, which has higher energy but is less stable, resists bonding when it is occupied.
An asterisk (sigma*) is placed next to the corresponding kind of molecular orbital to indicate an antibonding orbital. The antibonding orbital known as * would be connected to sigma orbitals, as well as antibonding pi orbitals are known as
* orbitals.
Therefore, molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
<u></u>
Hence, the correct answer will be option (b)
<u />
To know more about molecular orbital
brainly.com/question/13265432
#SPJ4
<u />
<u />
Answer:
3
Explanation:
Applying,
= R/R'............... Equation 1
Where n' = number of halflives that have passed, R = Original atom of the substance, R' = atom of the substance left after decay.
From the question,
Given: R = 40 atoms, R' = 5 atoms
Substitute these values into equation 1
= 40/5
= 8
= 2³
Equation the base,
n' = 3
Answer:
190 °C
Step-by-step explanation:
The pressure is constant, so this looks like a case where we can use <em>Charles’ Law</em>:
V₁/T₁ = V₂/T₂ Invert both sides of the equation.
T₁/V₁ = T₂/V₂ Multiply each side by V₂
T₂ = T₁ × V₂/V₁
=====
V₁ = 3.75 L; T₁ = (37 + 273.15) K = 310.15 K
V₂ = 5.6 L; T₂ = ?
=====
T₂ = 310.15 × 5.6/3.75
T₂ = 310.15 × 1.49
T₂ = 463 K
t₂ = 463 – 273.15
t₂ = 190 °C
I believe the ratio is 1:2
They both perform photosynthesis and also cell respiration