Answer:
The partial pressure of CO is 5.54x10⁻⁴⁹atm. You shouldn't worry because it is very low pressure
Explanation:
First, the balanced reaction is:
CO + 1/2O₂ → CO₂
The energies of formation are:
ΔG(CO)=-137.168kJ/mol
ΔG(O₂)=0
ΔG(CO₂)=-394.359kJ/mol
The energy of the reaction is:

The expression for calculate the partial pressure of CO is:

The universe comes into existence is first
The first neutral atoms form is second
The universe begins expanding is third
Gases form that will later go to shape stars and galaxies is fourth
Atomic nuclei form is last
I'm almost certain that is correct. Do not take my word for this.
Increasing every day. in 2013, we had about 7.125 Billion. in 9160, we had closer to 3 billion. It is still on a pretty steady clime today.
Answer:
(A) The shorter the wavelength, the more total energy the wave contains.
(B) The longer the wavelength, the less total energy the wave contains.
Explanation:
The wavelength (λ), frequency (f) and energy (E) are interrelated. This relationship between them is represented in the following equations:
λ = v/f and E = hf
Where;
λ = wavelength (m)
f = frequency (Hz)
E = energy (Joules)
v and h represents speed of light and Planck's constants respectively.
Combining both equations, E = hc/λ
This equation shows that ENERGY (E) is directly proportional to the frequency (f) but inversely proportional to the wavelength (λ). This means that "the shorter the wavelength, the more total energy a wave contains" and vice versa.
However, the higher the frequency, the more the total energy the wave contains and vice versa.