Answer:
1027.9 mL
Explanation:
Formula P1 x V1 / T1 = P2 x V2 / T2
Fill in what you know
Pressure is constant so no need to put that in making the formula
V1 / T1 = V2 / T2
Voulme 1= 950 mL
Volume 2= ?
Temperature 1 = 25 C
Temperature 2 = 50 C
Explanation:
Formula P1 x V1 / T1 = P2 x V2 / T2
Fill in what you know
Pressure is constant so no need to put that in making the formula
V1 / T1 = V2 / T2
Voulme 1= 950 mL
Volume 2= ?
Temperature 1 = 25 C
Temperature 2 = 50 C
Answer:
Lowering the temperature typically reduces the significance of the decrease in entropy. That makes the Gibbs Free energy of the reaction more negative. As a result, the reaction becomes more favorable overall.
Explanation:
In an addition reaction there's a decrease in the number of particles. Consider the hydrogenation of ethene as an example.
.
When
is added to
(ethene) under heat and with the presence of a catalyst,
(ethane) would be produced.
Note that on the left-hand side of the equation, there are two gaseous molecules. However, on the right-hand side there's only one gaseous molecule. That's a significant decrease in entropy. In other words,
.
The equation for the change in Gibbs Free Energy for a particular reaction is:
.
For a particular reaction, the more negative
is, the more spontaneous ("favorable") the reaction would be.
Since typically
for addition reactions, the "entropy term" of it would be positive. That's not very helpful if the reaction needs to be favorable.
(absolute temperature) is always nonnegative. However, lowering the temperature could help bring the value of
Answer:
to calculate the molarity of the said sucrose,
firstly calculate the moles
which is = Molecular weight of C12H22O11 = 342g/mol
then
moles = 139/342
= 0.41 moles
to calculate Molarity now
Molarity= moles of the solute/volume of solution in liter
=0.41/2.60
=0.158M
Explanation:
Answer:
Because of its weak intermolecular forces.
Explanation:
Hello there!
In this case, according to the given description, it turns out possible for us to recall the chemical structures of both ethanol and dimethyl ether as follows:

Thus, we can see that ethanol have London dispersion forces (C-C bonds), dipole-dipole forces (C-O bonds) and also hydrogen bonds (O-H bonds) which make ethanol a liquid due to the strong hydrogen bonds. On the other hand, we can see that dimethyl ether has just London and dipole forces, which are by far weaker than hydrogen bonding, that makes it unstable when liquid and therefore it tends to vaporize quite readily.
Regards!