The correct order given below shows the changes that occurs in a mice population in response to changes in their environment:
- The population of mice is in an environment with many black rocks
- Mice with black for are more likely to survive and reproduce than mice with brown fur
- After many generations, most of the mice in the population have black fur
- A sandstorm covers most of the population's environment with brown sand
- Mice with black fur are less likely to survive and reproduce than mice with brown fur
- After many generations, most of the mice in the population have brown fur
<h3>What is the correct order for natural selection in the desert environment given?</h3>
Based on the process of natural selection due to envrionmental pressures, the population of the mice in the desert changes as follows before and after the environmental change:
- The population of mice is in an environment with many black rocks
- Mice with black for are more likely to survive and reproduce than mice with brown fur
- After many generations, most of the mice in the population have black fur
- A sandstorm covers most of the population's environment with brown sand
- Mice with black fur are less likely to survive and reproduce than mice with brown fur
- After many generations, most of the mice in the population have brown fur
Therefore, the correct order shows the changes that occurs in a mice population in response to changes in their environment.
Learn more about about adaptation at: brainly.com/question/25594630
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
The pigment is called chlorophyll and it’s job is to absorb light- usually sunlight