The electric field at any point in the region between the conductors is proportional to the magnitude Q of charge on each conductor. It follows that:
"The potential difference Vab between the conductors is also proportional to Q"
If we double the magnitude of charge on each conductor, the charge density at each point doubles, the electric field at each point doubles, and the potential difference between conductors doubles; however, the ratio of charge to potential difference does not change. This ratio is called the capacitance C of the capacitor:

Given that:

and
Lastly, the capacitance is given by:
Answer:
False
Explanation:
Much information can be gotten from sensor due to the much data being gathered.
The answer is D because theres nothing stopping that person from falling
Answer:
B.) by interfering with sound waves
Explanation:
As we know that the interference of sound waves is of two types
1). constructive interference
2). destructive interference
now we know that constructive interference means the resultant intensity will be more than the intensity of interfering waves as here two waves are in same phase.
In destructive interference the resultant of two waves is given by the minimum resultant of the intensity as here the phase of two waves are opposite to each other.
So we will say that

here in case of noise cancelling headphones we know that the phase of noise is always made in opposite phase with the sound which is used to cancelled the noise.
This will reduce the noise and we will get a clear sound
Answer:
The flea will reach to a height of 5.2 cm.
Explanation:
Let us assume it is given that, a flea reaches a takeoff speed of 1.0 m/s over a distance of 0.50 mm.
Initial speed, u = 1 m/s
Initial distance, x = 0.5 mm
We need to find the height reached by the flea. Using third equation of motion to find it.
At maximum height, its final speed, v = 0

Here, a = -g

or
h = 5.2 cm
So, the flea will reach to a height of 5.2 cm.