Answer: A combination 0 degrees Celsius and 101.3 kPa or 1 atm correctly describes standard temperature and pressure.
Explanation:
The term standard temperature and pressure is also known as STP and it is most commonly used when we want to calculate the density of a gas.
The term standard temperature means
Fahrenheit or
or 273 Kelvin. On the other hand, term standard pressure means 1 atmosheric pressure of a gas.
Thus, we can conclude that a combination 0 degrees Celsius and 101.3 kPa or 1 atm correctly describes standard temperature and pressure.
The initial velocity of the ball is 1.01 m/s
Explanation:
The motion of the ball rolling off the desk is a projectile motion, which consists of two independent motions:
- A uniform horizontal motion with constant horizontal velocity
- A vertical accelerated motion with constant acceleration (
, acceleration due to gravity)
We start by analyzing the vertical motion: we can find the time of flight of the ball by using the following suvat equation

where
s = 1.20 m is the vertical displacement (the height of the desk)
u = 0 is the initial vertical velocity

t is the time of flight
Solving for t,

Now we analyze the horizontal motion. We know that the ball covers a horizontal distance of
d = 0.50 m
in a time
t = 0.495 s
Therefore, since the horizontal velocity is constant, we can calculate it as

So, the ball rolls off the table at 1.01 m/s.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
The relationships can best be described as follows:
As frequency increases, wavelength decreases. <span>The greater the </span>energy<span>, the larger the frequency </span>and<span> the shorter (smaller) the </span>wavelength<span>. </span>
<span>a) wavelength vs. frequency = inversely proportional
b) wavelength vs. energy = inversely proportional
c) frequency vs. energy = directly proportional
Hope this answers the questions. Have a nice day. Feel free to ask more questions.</span>
Answer:
A wave is a vibration in mediun tbat carries energy from one place to another.
Explanation: