Answer:
the net work per cycle
Btu per cycle
the power developed by the engine, W = 88.0144746 hp
Explanation:
the information given includes;
diameter of the four-cylinder bore = 3.7 in
length of the stroke = 3.4 in
The clearance volume = 16% = 0.16
The cylindrical volume 
the crankshaft N rotates at a speed of 2400 RPM.
At the beginning of the compression , temperature
= 60 F = 519.67 R
and;
Otto cycle with a pressure = 14.5 lbf/in² = (14.5 × 144 ) lb/ft²
= 2088 lb/ft²
The maximum temperature in the cycle is 5200 R
From the given information; the change in volume is:







the mass in air ( lb) can be determined by using the formula:

where;
R = 53.3533 ft.lbf/lb.R°

m = 0.0018962 lb
From the tables of ideal gas properties at Temperature 519.67 R


At state of volume 2; the relative volume can be determined as:



The specific energy
at
is 184.7 Btu/lb
From the tables of ideal gas properties at maximum Temperature T = 5200 R


To determine the relative volume at state 4; we have:



The specific energy
at
is 591.84 Btu/lb
Now; the net work per cycle can now be calculated as by using the following formula:






Btu per cycle
the power developed by the engine, in horsepower. can be calculated as follows;
In the four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

where ;

N' = 1200 cycles/min
N' = 1200 cycles/60 seconds
N' = 20 cycles/sec
W = 4 × 20 cycles/sec × 0.777593696
W = 62.20749568 Btu/s
W = 88.0144746 hp