Answer:

Explanation:
<u>Given Data:</u>
Mass = m = 4 kg
Acceleration due to gravity = g = 9.8 m/s²
Height = h = 1 m
<u>Required:</u>
Potential Energy = P.E. = ?
<u>Formula:</u>
P.E. = mgh
<u>Solution:</u>
P.E. = (4)(9.8)(1)
P.E. = 39.2 Joules
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Newton's first law of motion is an object in motion stays in motion until acted upon by another force. Driving at 30 mph in a car is going to stay constant until you crash the car into a wall, stopping the car.
1). both
2). Venus
3). Venus catastrophically; Earth too but much less.
4). Earth
5). Earth
6). Venus (It would be pretty hard for US to mistake Earth for a star.)
Answer:
26.5 m
Explanation:
= initial position of the object = 75.2 m
= final position of the object
= displacement of the object = - 48.7
Displacement of the object is given as the difference of final and initial position of the object

Inserting the values
- 48.7 = x - 75.2
x = 26.5 m
Answer:
26 m/s
69 m
Explanation:
Given:
v₀ = 20 m/s
a = 2 m/s²
t = 3 s
Find: v and Δx
v = at + v₀
v = (2 m/s²) (3 s) + 20 m/s
v = 26 m/s
Δx = v₀ t + ½ at²
Δx = (20 m/s) (3 s) + ½ (2 m/s²) (3 s)²
Δx = 69 m