Answer:
2.09 atm
Explanation:
We can solve this problem by using the equation of state for an ideal gas, which relates the pressure, the volume and the temperature of an ideal gas:

where
p is the pressure of the gas
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature
In this problem we have:
n = 0.65 mol is the number of moles of the gas
V = 8.0 L is the final volume of the gas
is the temperature of the gas
is the gas constant
Solving for p, we find the final pressure of the gas:

Answer:
The molar mass of the compound given is 182.182 g/mol.
Explanation:
To calculate the molar mass of the compound, we must multiply the number of moles of each element by the the individual molar mass of each element and add them together.
Let's start with Calcium. The molar mass of Calcium is 40.078. In this compound, we have three moles of Calcium, so we should multiply this number by 3.
40.078 g/mol * 3 mol = 120.234 g
Now, let's do the same for Phosphorus.
30.974 g/mol * 2 g/mol = 61.948 g
To find the molar mass of the entire compound, we should add these two values together.
120.234 g + 61.948 g = 182.182 g
Therefore, the correct answer is 182.182 g/mol.
Hope this helps!
Answer: Formula: Mass = (Volume)(Density)
Iron Density = 7.87 g/cm^3
Volume of Iron = 55.2 cm^3
Mass=(V)(D)
Mass= (55.2 cm^3) x (7.87 g/cm^3)
Mass= 434,42 g
Explanation: