(a) Differentiate the position vector to get the velocity vector:
<em>r</em><em>(t)</em> = (3.00 m/s) <em>t</em> <em>i</em> - (4.00 m/s²) <em>t</em>² <em>j</em> + (2.00 m) <em>k</em>
<em>v</em><em>(t)</em> = d<em>r</em>/d<em>t</em> = (3.00 m/s) <em>i</em> - (8.00 m/s²) <em>t</em> <em>j</em>
<em></em>
(b) The velocity at <em>t</em> = 2.00 s is
<em>v</em> (2.00 s) = (3.00 m/s) <em>i</em> - (16.0 m/s) <em>j</em>
<em></em>
(c) Compute the electron's position at <em>t</em> = 2.00 s:
<em>r</em> (2.00 s) = (6.00 m) <em>i</em> - (16.0 m) <em>j</em> + (2.00 m) <em>k</em>
The electron's distance from the origin at <em>t</em> = 2.00 is the magnitude of this vector:
||<em>r</em> (2.00 s)|| = √((6.00 m)² + (-16.0 m)² + (2.00 m)²) = 2 √74 m ≈ 17.2 m
(d) In the <em>x</em>-<em>y</em> plane, the velocity vector at <em>t</em> = 2.00 s makes an angle <em>θ</em> with the positive <em>x</em>-axis such that
tan(<em>θ</em>) = (-16.0 m/s) / (3.00 m/s) ==> <em>θ</em> ≈ -79.4º
or an angle of about 360º + <em>θ</em> ≈ 281º in the counter-clockwise direction.
Answer:
The equation of equilibrium at the top of the vertical circle is:
\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}
The speed experimented by the car is:
\frac{N}{m}+g=\frac{v^{2}}{R}
v = \sqrt{R\cdot (\frac{N}{m}+g) }
v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}
v\approx 9.302\,\frac{m}{s}
The equation of equilibrium at the bottom of the vertical circle is:
\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}
The normal force on the car when it is at the bottom of the track is:
N=m\cdot (\frac{v^{2}}{R}+g )
N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)
N=21.690\,N
Answer:
the force of the plow pulling backward on the tractor
Explanation:
Answer:
this is a law because it is a constant fact of nature
Explanation: