1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LiRa [457]
3 years ago
14

Name two elements that have similar properties. How can you tell using the periodic table?

Physics
1 answer:
tangare [24]3 years ago
7 0
Helium and nitrogen because they are both from the noble gas group.
You might be interested in
Why is it important for scientist to do research?
sweet-ann [11.9K]

Answer:

Because if they dont research first they will be unprepared

Explanation:

3 0
2 years ago
Read 2 more answers
A 6.2 kg object moving in the +x direction at 5.3 m/s collides head-on with an 7.8 kg object moving in the −x direction at 2.5 m
Crank

Answer:

10ms kg 88.2

Explanation:

Toook test

8 0
3 years ago
If the dartboard below is used to model an atom, which subatomic particles would be located at Z? *
Anna11 [10]

I know that protons and neutrons are located at the center of an atom, so the correct answer is D

7 0
3 years ago
A long metal cylinder with radius a is supported on an insulating stand on the axis of a long, hollow, metal tube with radius b.
bija089 [108]

a)

i) Potential for r < a: V(r)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

ii) Potential for a < r < b:  V(r)=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r}

iii) Potential for r > b: V(r)=0

b) Potential difference between the two cylinders: V_{ab}=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

c) Electric field between the two cylinders: E=\frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}

Explanation:

a)

Here we want to calculate the potential for r < a.

Before calculating the potential, we have to keep in mind that the electric field outside an infinite wire or an infinite cylinder uniformly charged is

E=\frac{\lambda}{2\pi \epsilon_0 r}

where

\lambda is the linear charge density

r is the distance from the wire/surface of the cylinder

By integration, we find an expression for the electric potential at a distance of r:

V(r) =\int Edr = \frac{\lambda}{2\pi \epsilon_0} ln(r)

Inside the cylinder, however, the electric field is zero, because the charge contained by the Gaussian surface is zero:

E=0

So the potential where the electric field is zero is constant:

V=const.

iii) We start by evaluating the potential in the region r > b. Here, the net electric field is zero, because the Gaussian surface of radius r here contains a positive charge density +\lambda and an equal negative charge density -\lambda. Therefore, the net charge is zero, so the electric field is zero.

This means that the electric potential is constant, so we can write:

\Delta V= V(r) - V(b) = 0\\\rightarrow V(r)=V(b)

However, we know that the potential at b is zero, so

V(r)=V(b)=0

ii) The electric field in the region a < r < b instead it is given only by the positive charge +\lambda distributed over the surface of the inner cylinder of radius a, therefore it is

E=\frac{\lambda}{2\pi r \epsilon_0}

And so the potential in this region is given by:

V(r)=\int\limits^b_r {Edr} = \frac{\lambda}{2\pi \epsilon_0}  (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r} (1)

i) Finally, the electric field in the region r < a is zero, because the charge contained in this region is zero (we are inside the surface of the inner cylinder of radius a):

E = 0

This means that the potential in this region remains constant, and it is equal to the potential at the surface of the inner cylinder, so calculated at r = a, which can be calculated by substituting r = a into expression (1):

V(a)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

And so, for r<a,

V(r)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

b)

Here we want to calculate the potential difference between the surface of the inner cylinder and the surface of the outer cylinder.

We have:

- Potential at the surface of the inner cylinder:

V(a)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

- Potential at the surface of the outer cylinder:

V(b)=0

Therefore, the potential difference is simply equal to

V_{ab}=V(a)-V(b)=\frac{\lambda}{2\pi \epsilon_0} ln(\frac{b}{a})

c)

Here we want to find the magnitude of the electric field between the two cylinders.

The expression for the electric potential between the cylinders is

V(r)=\int\limits^b_r {Edr} = \frac{\lambda}{2\pi \epsilon_0}  (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0}  ln\frac{b}{r}

The electric field is just the derivative of the electric potential:

E=-\frac{dV}{dr}

so we can find it by integrating the expression for the electric potential. We find:

E=-\frac{d}{dr}(\frac{\lambda}{2\pi \epsilon_0} (ln(b)-ln(r))=\frac{\lambda}{2\pi \epsilon_0} \frac{1}{r}

So, this is the expression of the electric field between the two cylinders.

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
Witch sentence states Newton third law
Dominik [7]

Answer:

For every action, there is an equal and opposite reaction.

Explanation:

Physics helps alot lol

7 0
3 years ago
Other questions:
  • Two forces whose resultant is 100N,are perpendicular to each other.if one of them makes an angle of 60° with the resultant, calc
    15·1 answer
  • An engineer is adding a heat sink to a motor to help absorb some of the heat produced by the motor. Which piece of metal would a
    11·2 answers
  • What is the climate of northern Alaska?
    6·2 answers
  • A circular curve of radius 150 m is banked at an angle of 15 degrees. A 750-kg car negotiates the curve at 85.0 km/h without ski
    11·1 answer
  • Orbit is gravity pulling an object into a curved path as it attempts to fly off in a straight line .
    12·2 answers
  • WILL GIVE BRAINLIEST AND 24PTS
    10·2 answers
  • Some plants disperse their seeds by having the fruit split and contract, propelling the seeds through the air. The trajectory of
    15·1 answer
  • Let DrippyJazzz124 answer the QUESTION
    7·1 answer
  • What is the total resistance in this circuit?
    7·1 answer
  • How does an electric circuit work?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!