Answer:
Wind direction is determined with a wind vane.
Hope it will help :)
Answer:
Explanation:
Well, obviously a molecule with polar bonds can be polar in itself. It's like saying I am an atheltic person who can just reach the basketball rim with my head and also I can dunk.
But if the question is how can a molecule that in non-polar have polar bonds, well, its because the polar bonds' dipole cancels each other out. It's like a tight rope. If a person pulls in one direction, it intuitively, the rope would go in that direction. However, if a person pulls in the other direction with the same amount of force, the rope stays still. This is the same case. Although molecules can have different electronegativities, the pull of electrons in one direction is cancelled out by a pull in the opposite direction, making the net dipole 0.
This is common for main VSERP shaped molecules like linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.
Answer:
Any binary molecular compound of hydrogen and a Group 6A element above Selenium will be less acidic, so water and dihydrogen sulfide are less acidic in aqueous solution than hydrogen selenide.
Explanation:
Going down in a group increases the atomic radius and a greater atomic radius implyes greater ionic radius.
When ionization takes place in these compounds they yelds protons (hidrogen ion) and an lewis base (anion). The greater the ionic radius the greater its stability, thus the periodic tendency is increaing the acidity of binary hidrogen compounds when going down a group. On the other hand going up a group decreases acidity, so any molecular compound of hydrogen and a Group 6A element above Selenium will be less acidic, so water and dihydrogen sulfide are less acidic in aqueous solution than hydrogen selenide.
Answer:
265.2amu
Explanation:
Given parameters:
Atomic mass = 254.9amu
Abundance of isotope 1 = 72%
Atomic mass of isotope 1 = 250.9amu
Abundance of isotope 2 = 100 - 72 = 28%
Unknown:
Atomic mass of isotope 2 = ?
Solution:
To find the atomic mass of isotope 2, use the expression below:
Atomic mass = (abundance of isotope 1 x atomic mass of isotope 1) + (abundance of isotope 2 x atomic mass of isotope 2)
Now insert the parameters and find the unknown;
254.9 = (0.72 x 250.9) + (0.28 x Atomic mass of isotope 2)
254.9 = 180.648 + 0.28x atomic mass of isotope 2
254.9 - 180.648 = 0.28x atomic mass of isotope 2
74.25 = 0.28 x atomic mass of isotope 2
Atomic mass of isotope 2 = 265.2amu
h2+o2=2h2o.................................................