Answer:
hey u apply p=mv and 2 are given then calculate thirds value it's a simple do it
Answer:
0.005 m
Explanation:
length of steel (L°) = 12 m
initial temperature (T) = 16 degrees
expected temperature (T') = 50 degrees
We can find how large the gaps should be if the track is not to buckle when the temperature is as high as 50 degrees from the formula below
ΔL = ∝L°ΔT where
- ΔL = expansion / gap
- ∝ = linear expansion coefficient of steel =

- L° = initial length
- ΔT = change in temperature
ΔL =
x 12 x (50-16) = 0.005 m
Answer:
θ = 66.90°
Explanation:
we know that

I= intensity of polarized light =1
I_o= intensity of unpolarized light = 13
putting vales we get

⇒
therefore θ = 66.90°
<span>The initial momentum is 5 kg m/s and the final momentum is 10 kg m/s
'cause P = m*v, when we increase either m or v, P also increases by the same expression,
P = 5 * 2 = 10
So, option D is your answer!!
Hope this helps!
</span>