deceleration or rėtardation i’m pretty sure (it won’t let me say the second word but it’s correct)
Answer:
Use Fc centripetal force as positive and W the weight as negative
N = m v^2 / R + m g
v^2 = (N - m g) R / m
v^2 = (995 - 57 * 9.8) 42.7 / 57 = 327 m^2/s^2
v = 18.1 m/s
Note: N - m g is the net force producing the centripetal force
Answer:
P = 0.25 W
Explanation:
Given that,
The emf of the battry, E = 2 V
The resistance of a bulb, R = 16 ohms
We need to find the power delivered to the bulb. We know that, the formula for the power delivered is given by :

So, 0.25 W power is delivered to the bulb.
Change in velocity = d(v)
d(v) = v2 - v1 where v1 = initial speed, v2 = final speed
v1 = 28.0 m/s to the right
v2 = 0.00 m/s
d(v) = (0 - 28)m/s = -28 m/s to the right
Change in time = d(t)
d(t) = t2 - t1 where t1 = initial elapsed time, t2 = final elapsed time
t1 = 0.00 s
t2 = 5.00 s
d(t) = (5.00 - 0.00)s = 5.00s
Average acceleration = d(v) / d(t)
(-28.0 m/s) / (5.00 s)
(-28.0 m)/s * 1 / (5.00 s) = -5.60 m/s² to the right
The
two precipitation peaks in Mbandaka during March to April and September to
November is due to the intertropical convergence zone.
Intertropical
convergence zone is a narrow zone located near the equator. It is where the
northern and southern air masses intersect which results to low atmospheric
pressure. Due to the intertropical convergence zone’s meeting of air masses,
often times the air pressure are lower which will results to colder air, or
even rainfall during the period of March to April, and most especially
September to November in Mbandaka.
<span>Since
Mbandaka is located at the cented of Tumba-Ngiri-Maindombe area, which is named
as a Wetland of International importance, there is really a bigger chance that
this place experience above 60mm precipitation in a year, temperatures averaging
from 23 – 26 degrees Celsius.</span>