Answer:
λ=2167.6 nm
The wavelength of light emitted is 2167.6 nm.
Explanation:
We recall that Eₙ=
since there was transition from n7 to n=4 we will first calculate the change in the energy i.e ΔE
ΔE=E₄-E₇
ΔE=
ΔE=-9.1760*10^-20 J
Now:
|ΔE|=Energy of photon=h*v=h*c/λ
λ=h*c/|ΔE|
λ=
λ=2.1676*10^-6 m
λ=2167.6*10^-9 m
λ=2167.6 nm
The wavelength of light emitted is 2167.6 nm.
Explanation:
A non-electrolyte is defined as a solution which does not contain any ions and hence, it is unable to conduct electricity.
For example, when a non-polar substance like
is dissolved in water then it will not dissociate into ions.
As electricity is the flow of ions or electrons. So, a non-electrolyte solution is not able to conduct electricity.
Similarly, a compound that is insoluble in water will not dissociate into ions. Hence, this type of solution will not be able to conduct electricity.
Answer:
11.35 g/cm³
Explanation:
If your rounding then 11.4. hope this helps :)
Answer: the pH of the solution is 4.52
Explanation:
Consider the weak acid as Ha, it is dissociated as expressed below
HA H⁺ + A⁻
the Henderson -Haselbach equation can be expressed as;
pH = pKa + log( [A⁻] / [HA])
the weak acid is dissociated into H⁺ and A⁻ ions in the solution.
now the conjugate base of the weak acid HA is
HA(aq) {weak acid} H⁺(aq) + A⁻(aq) {conjugate base}
so now we calculate the value of Kₐ as well as pH value by substituting the values of the concentrations into the equation;
pKₐ = -logKₐ
pKₐ = -log ( 7.4×10⁻⁵ )
pKₐ = 4.13
now thw pH is
pH = pKₐ + log( [A⁻] / [HA])
pH = 4.13 + log( [0.540] / [0.220])
pH = 4.13 + 0.3899
pH = 4.5199 = 4.52
Therefore the pH of the solution is 4.52