Answer:
The correct answer to this question is (c) 25.0 m
Explanation:
To solve this we list out the variables thus
mole fraction of sodium hydroxide = 0.310
Mole fraction = number of moles of a component ÷ total number of moles in the solution
Mole fraction = 0.310
In a saturaturated aqueous solution we have NaOH and water
∴ Number of moles of water molecules per unit = 1 - 0.310 = 0.690
However 0.690 moles of H₂O weighs = 0.690 mole × 18.01528 g/mol =12.43 g = 0.01243 kg of H₂O
But the molality = number of moles per Kilogram of H₂O
therefore molality of NaOH in the sample of solution =
(0.310 mol of NaOH )÷(0.01243 kg of H₂O)
= 24.93 mol/kg or ≅ 25.0 m
Answer:hope we can be friends
can i please get brainliest
Although phlorizin inhibition of Na+-glucose cotransport occurs within a few seconds, 3H-phlorizin binding to the sodium-coupled glucose transport protein(s) requires several minutes to reach equilibrium (the fast-acting slow-binding paradigm). Using kinetic models of arbitrary dimension that can be reduced to a two-state diagram according to Cha’s formalism, we show that three basic mechanisms of inhibitor binding can be identified whereby the inhibitor binding step either (A) represents, (B) precedes, or (C) follows the rate-limiting step in a binding reaction. We demonstrate that each of mechanisms A–C is associated with a set of unique kinetic properties, and that the time scale over which one may expect to observe mechanism C is conditioned by the turnover number of the catalytic cycle. In contrast, mechanisms A and B may be relevant to either fast-acting or slow-binding inhibitors.
Explanation:
Answer:
Incomplete exercise: isolated 0.169 g of eugenol from 5.09 g of cloves
The answer is:
The theoretical mass of eugenol is 0.8653 g and the percent recovery is 19.53%
Explanation:
The theoritical mass is equal to:

The percent recovery is:
%
Answer:
1.3 × 10³ g
Explanation:
Step 1: Convert the mass of calaverite to grams
We will use the relationship 1 kg = 1,000 g.

Step 2: Establish the appropriate mass ratio
The mass ratio of AuTe₂ to Au is 452.17:196.97.
Step 3: Calculate the maximum mass of pure gold that can be obtained from 3.0 × 10³ g of calaverite
