Answer:
= 4
Explanation:
To solve this exercise we will use Bohr's atomic model
= - 13.606 / n² [eV]
The transition from level n = 2 to level n = 1 is valid
= - 13.606 [¼ -1/1]
= 10.2045 eV
Bohr's model for atoms with only one electron is
= -13.606 Z² / n²
Where Z is the atomic number of the atom.
In this case the helium atom has an atomic number of Z = 2 from the level n₀ = 2 let's look up to what level it reaches
ΔE = -13.606 [4 /
² - 4/4]
4 /
² = -ΔE / 13.606 + 1
4 /
² = -10.2045 / 13.606 +1 = -0.75 +1
4 /
² = 0.25
= √ 4 / 0.25
= 4
Here are the answers to the given question above.
<span>Relative dating uses laws or principles of stratigraphy and paleontology. These laws of relative dating are:
-</span><span>law of original horizontality
-</span><span>law of superposition
-</span><span>law of original lateral continuity
-</span><span>law of cross-cutting or intrusive relationships
Hope these are the answers that you are looking for.</span>
Answer:
Explanation:
initial velocity, u = 0
final velocity, v = 60 mph = 26.8 m/s
time t = 10 s
Let a be the acceleration and s be he distance traveled.
Use first equation of motion
v = u + a t
26.8 = 0 + a x 10
a = 2.68 m/s
Use second equation of motion
s = ut + 1/2 at²
s = 0 + 0.5 x 2.68 x 10 x 10
s = 134 m
As, 1 m = 3.28 ft
So, s = 134 x 3.28 ft
s = 439.6 ft
Answer:
change in y = -7
change in x = -17
magnitude of displacement = sqrt(7^2+17^2)
tan of angle below -x axis = 7/17
because in third quadrant where x and y are negative