Answer:
Explanation:
a is the acceleration
μ is the coefficient of friction
Acceleration of the object is given by

Velocity at the bottom

after travelling 4m , its velocity becomes 0



Coefficient of kinetic friction
μ = F/N

Therefore, the Coefficient of kinetic friction is 0.31
Answer:
15.3 s and 332 m
Explanation:
With the launch of projectiles expressions we can solve this problem, with the acceleration of the moon
gm = 1/6 ge
gm = 1/6 9.8 m/s² = 1.63 m/s²
We calculate the range
R = Vo² sin 2θ / g
R = 25² sin (2 30) / 1.63
R= 332 m
We will calculate the time of flight,
Y = Voy t – ½ g t2
Voy = Vo sin θ
When the ball reaches the end point has the same initial height Y=0
0 = Vo sin t – ½ g t2
0 = 25 sin (30) t – ½ 1.63 t2
0= 12.5 t – 0.815 t2
We solve the equation
0= t ( 12.5 -0.815 t)
t=0 s
t= 15.3 s
The value of zero corresponds to the departure point and the flight time is 15.3 s
Let's calculate the reach on earth
R2 = 25² sin (2 30) / 9.8
R2 = 55.2 m
R/R2 = 332/55.2
R/R2 = 6
Therefore the ball travels a distance six times greater on the moon than on Earth
They are unproven but accepted as fact.
Many experiments support them but they can be disproven by the results of a single experiment. Until then, they stand.
The third statement is correct.
-- The mass of the sun never increases.
-- It does decrease, but not nearly enough to have any noticeable
effect on the orbital motion of the Earth, or any other planet.
-- When Earth is closer to the sun, it moves faster in its orbit.
-- When Earth is farther from the sun, it moves slower in its orbit.
-- The result is that the line from the sun to the Earth always covers
the same amount of area in the same length of time.
-- Johannes Kepler noticed this, and it's his Second Law of planetary motion.
-- Newton showed that if his equations for gravity and motion are correct,
then planets MUST behave this way.