Answer:
4Al203 + 9Fe -> 3Fe3O4 + 8Al
Amount of Al on reactant side: 8
Amount of Al on product side: 8
Amount of O on reactant side: 12
Amount of O on product side: 12
Amount of Fe on reactant side: 9
Amount of Fe on product side: 9
Answer:
0.15215407
Explanation:
Im not 100% sure if this is correct!
are present in
<u>Explanation:</u>
It is known that each mole of an element is composed of avagadro's number of molecules. So if we need to determine, we need to divide the number of molecules with the avagadro's number.
So,
As here molecules of carbon di oxide is given. So the moles in it will be
No. of moles of carbon dioxide =
No. of moles = moles of carbon dioxide.
Thus,
of carbon dioxide are present in .
Those are called as element
Answer:
- <em>Brønsted-Lowry acid: HNO₂</em>
- <em>Brønsted-Lowry base: NH₃</em>
- <em>Conjugate acid: NH₄⁺</em>
- <em>Conjugate base: NO₂⁻</em>
Explanation:
The equation is:
<em>Brønsted-Lowry acids</em> are H⁺ donors.
<em>Brønsted-Lowry bases</em> are H⁺ acceptors.
Thus, on the left side, <em>HNO₂</em> is the acid and <em>NH₃ </em>is the base.
The <em>conjugate acids</em> and <em>conjugate bases</em> are on the right side of the equation.
The <em>conjugate acid</em> is the spieces that is formed after a base accepts the proton; thus it is <em>NH₄⁺</em>. A <em>conjugate acid</em> contains one more H atom and one more + charge than the base that formed it.
The <em>conjugate base</em> is the species that is formed after the acid donates its proton; thus, <em>NO₂⁻</em> is the <em>conjugate base</em>. A <em>conjugate base</em> contains one less H atom and one more - charge than the acid that formed it.
Summarizing:
- Brønsted-Lowry acid: HNO₂