2.34 moles titanium x (6.022 x 10^23)/1 mole titanium = 1.41 x 10^24
Answer: 2.71 moles of solute for every 1 kg of solvent.
Explanation: As you know, the molality of a solution tells you the number of moles of solute present for every 1 kg of the solvent.This means that the first thing that you need to do here is to figure out how many grams of water are present in your sample. To do that, use the density of water.500.mL⋅1.00 g1mL=500. g Next, use the molar mass of the solute to determine how many moles are present in the sample.115g⋅1 mole NanO385.0g=1.353 moles NaNO3So, you know that this solution will contain 1.353moles of sodium nitrate, the solute, for 500. g of water, the solvent.In order to find the molality of the solution, you must figure out how many moles of solute would be present for 1 kg=103g of water.103g water⋅1.353 moles NaNO3500.g water=2.706 moles NaNO3You can thus say that the molality of the solution is equal to molality=2.706 mol kg−1≈2.71 mol kg−1 The answer is rounded to three sig figs.
<h3><em><u>solution</u></em><em><u>:</u></em></h3>
<em><u>The initial entropy is obtained from the initial pressure and temperature with data from A-6 using interpolation:</u></em>
<em><u>s</u></em><em><u>=</u></em><em><u> </u></em><em><u>8</u></em><em><u>.</u></em><em><u>26</u></em><em><u>5</u></em><em><u>2</u></em><em><u> </u></em><em><u>kJ</u></em><em><u>/</u></em><em><u>kgK</u></em>
<em><u>The final temperature is determined from the entropy and the final pressure with data from A-6 using interpolation:</u></em>
<em><u>T₂ = T₁+</u></em><em><u> </u></em><em><u>T₂ - </u></em><em><u>T₁</u></em><em><u>/</u></em><em><u> </u></em><em><u>8</u></em><em><u>₂</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>8</u></em><em><u>₁</u></em><em><u> </u></em><em><u>(</u></em><em><u> </u></em><em><u>s</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>s</u></em><em><u>₁</u></em><em><u>)</u></em>
<em><u>= </u></em><em><u>(</u></em><em><u>400 +</u></em><em><u> </u></em><em><u>500 - 400</u></em><em><u>/</u></em><em><u>8.3271</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>8.0347</u></em><em><u> </u></em><em><u>(8.2652 - 8</u></em><em><u>)</u></em><em><u>)</u></em>
<em><u>= 478.83°C</u></em>
<em><u>The final enthalpy is determined in the same way:</u></em>
<em><u>h₂= h₁</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>h₂</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>h₁</u></em><em><u>/</u></em><em><u>s</u></em><em><u>₂</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>s</u></em><em><u>₁</u></em><em><u> </u></em><em><u>( s - s₁)</u></em>
<em><u>= (</u></em><em><u> </u></em><em><u>3275.5</u></em><em><u>+</u></em><em><u> </u></em><em><u>3486.6 </u></em><em><u>-</u></em><em><u> </u></em><em><u>3275.5</u></em><em><u>/</u></em><em><u> </u></em><em><u>8.3271</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>8.0347</u></em><em><u>)</u></em><em><u> </u></em><em><u>(8.265</u></em><em><u>)</u></em>
<em><u>=</u></em><em><u> </u></em><em><u>3441.91 </u></em><em><u>kJ</u></em><em><u>/</u></em><em><u>kg</u></em>
Answer: Volume of CO2 is 89127 mL
Explanation: The reaction that takes place is: C2H2 + O2 --> CO2 + H2O
The amount of C2H2 that react allow us to predict the amount of CO2 that will be obtained
26g/1mol is molar mass of C2H2 and 2/4 is the molar relation between CO2 and C2H2 in this reaction. Canceling units, at the end mol of CO2 are obtained
Now with the moles of CO2 and the ideal gases equation is possible to calculate the volumen occupied by the gas.
PV = RnT where P: pressure, V: volume, R: ideal gas constant, n: moles and T: temperature expressed in K (add 273,15 to °C temperature: 37,4°C + 273,15 = 310,55K)
V= RnT/P
To express volume in mL multiply the L result by 1000 which equals 89127 mL