From the calculations performed, the free energy change for the reaction is 72 kJ/mol.
<h3>What is the equilibrium constant?</h3>
The equilibrium constant is a value that shows the extent to which reactants have been converted to products.
Given that the equation of the reaction is;
3CH4(g)→C3H8(g)+2H2(g)
Then;
PC3H8 = 0.013 atm
PH2 = 2.3×10−2 atm
PCH4 = 41 atm
Now;
ΔG = ΔG° + RTlnQ
ΔG°reaction = ΔG°products - ΔG°reactants
ΔG°reaction = [( -23.4) +2(0)] - 3(-50.8)
ΔG°reaction = 129 kJ/mol
Q = PC3H8 * PH2^2/PCH4^3
Q = 0.013 * (2.3×10−2)^2/( 41)^3
Q = 6.877 * 10^-6/68921
Q= 9.9* 10^-11
Hence;
ΔG = 129 * 10^3 + [8.314 * 298 * (ln 9.9* 10^-11 )]
ΔG = 129 * 10^3 - 57073
ΔG = 72 kJ/mol
Learn more about free energy change: brainly.com/question/14143095
Answer:
C. It decreases by a factor of 4
Explanation:
F1 = kq1*q2/r²
F2 = kq1*q2/(2r)² = kq1*q2/(4r²) = kq1*q2/(r²*4) = F1/4
Answer:
Explanation:
In this case we want to know the structures of A (C6H12), B (C6H13Br) and C (C6H14).
A and C reacts with two differents reagents and conditions, however both of them gives the same product.
Let's analyze each reaction.
First, C6H12 has the general formula of an alkene or cycloalkane. However, when we look at the reagents, which are HBr in ROOR, and the final product, we can see that this is an adition reaction where the H and Br were added to a molecule, therefore we can conclude that the initial reactant is an alkene. Now, what happens next? A is reacting with HBr. In general terms when we have an adition of a molecule to a reactant like HBr (Adding electrophyle and nucleophyle) this kind of reactions follows the markonikov's rule that states that the hydrogen will go to the carbon with more hydrogens, and the nucleophyle will go to the carbon with less hydrogen (Atom that can be stabilized with charge). But in this case, we have something else and is the use of the ROOR, this is a peroxide so, instead of follow the markonikov rule, it will do the opposite, the hydrogen to the more substituted carbon and the bromine to the carbon with more hydrogens. This is called the antimarkonikov rule. Picture attached show the possible structure for A. The alkene would have to be the 1-hexene.
Now in the second case we have C, reacting with bromine in light to give also B. C has the formula C6H14 which is the formula for an alkane and once again we are having an adition reaction. In this case, conditions are given to do an adition reaction in an alkane. bromine in presence of light promoves the adition of the bromine to the molecule of alkane. In this case it can go to the carbon with more hydrogen or less hydrogens, but it will prefer the carbon with more hydrogens. In this case would be the terminal hydrogens of the molecules. In this case, it will form product B again. the alkane here would be the hexane. See picture for structures.
Answer:
both are the types of mixture and both are impure substances that donot have fixed composition and the composition of constituents is not uniform
Answer:
The final balanced equation is :

Explanation:

Balancing in acidic medium:
First we will determine the oxidation and reduction reaction from the givne reaction :
Oxidation:

Balance the charge by adding 2 electrons on product side:
....[1]
Reduction :

Balance O by adding water on required side:

Now, balance H by adding
on the required side:

At last balance the charge by adding electrons on the side where positive charge is more:
..[2]
Adding [1] and [2]:

The final balanced equation is :
