Answer:
The magnitude of the electric field be 171.76 N/C so that the electron misses the plate.
Explanation:
As data is incomplete here, so by seeing the complete question from the search the data is
vx_0=1.1 x 10^6
ax=0 As acceleration is zero in the horizontal axis so
Equation of motion in horizontal direction is given as


Now for the vertical distance
vy_o=0
than the equation of motion becomes

Now using this acceleration the value of electric field is calculated as

Here a is calculated above, m is the mass of electron while q is the charge of electron, substituting values in the equation

So the magnitude of the electric field be 171.76 N/C so that the electron misses the plate.
The food substance being used which turned Fehling's solution to brick red is a reducing sugar.
<h3>What is Fehling's solution?</h3>
This is an indicator which is used to test for the presence of reducing sugar or aldehydes in a solution.
Brick red precipitate of copper(I) oxide is formed when it tests positive to compounds such as glucose etc.
Read more about Fehling solution here brainly.com/question/3262179
#SPJ1
Explanation:
1. To graphically add vectors, use the tail-to-tip method. Draw the first vector (it doesn't matter which), then draw the second vector where the first vector ends. The resultant vector is from the tail of the first vector to the tip of the second vector.
This graph shows two ways to get the resultant: A + B or B + A.
desmos.com/calculator/bqhcclhhqc
2. To algebraically add vectors, split each vector into x and y components.
Aₓ = 5.0 cos 45 = 3.5
Aᵧ = 5.0 sin 45 = 3.5
Bₓ = 2.0 cos 180 = -2.0
Bᵧ = 5.0 sin 180 = 0
The components of the resultant vector are the sums of the components of A and B.
Cₓ = 3.5 + -2.0 = 1.5
Cᵧ = 3.5 + 0 = 3.5
The magnitude of the resultant vector is found with Pythagorean theorem, and the direction is found with tangent.
C = √(Cₓ² + Cᵧ²) ≈ 3.9 m/s
θ = atan(Cᵧ / Cₓ) ≈ 67°
1 watt = 1 joule per second = 1 newton meter per second = 1 kg m2 s-3