Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to figure out the required net ionic equation by firstly writing out the complete molecular equation between aspirin and sodium acetate:

Whereas acetic acid and sodium acetylsalicylate are formed. Now, we write the complete ionic equation whereby sodium acetate and sodium acetylsalicylate are ionized because they are salts yet neither aspirin nor acetic acid are ionized as they are weak acids:

Finally, for the net ionic equation we cancel out the sodium spectator ions to obtain:

Regards!
Answer:
It's nitrogen
Explanation:
cuz it has valence 3 and a diatomic gas at room temperature
Answer;
-Two chlorine atoms
Explanation;
A barium atom attains a stable electron configuration when it bonds with two chlorine atoms.
-Barium is an alkaline earth metal, in group two of the periodic table. Like other alkaline earth metal it has a valency of two which means it reacts by loosing two electrons.
-Chlorine on the other hand is a halogen (group seven element) it reacts by gaining an electron, thus two chlorine atoms will require two electrons. Therefore, Barium would attain a stable configuration by loosing two electrons to two chlorine atoms.
Answer:
Solutions are always homogeneous.
Explanation:
Solution:
Solution are considered homogeneous because in solution the ratio of solute and solvent remain the same throughout the solution. Both solute and solvent are chemically combined and form a new substance.
In solution the particles of solute can not be seen through naked eye.
When the light is passed through the solution it can not scattered.
Example:
When salt is dissolve in water it makes a solution.
The solution also exist in gaseous form. For example oxygen and many other gases dissolved in nitrogen also form a solution.
Mixture:
In mixture substance are physically combined. In mixture every every individual particle retain their properties.
It can be consist of solid, liquid and gas.
Examples:
Sand in water is also a mixture.
Oil in water form mixture.
Answer:
Structure in attachment.
Explanation:
The oxymercuration-demercuration of an asymmetric alkene usually produces the Markovnikov orientation of an addition. The electrophile ⁺Hg(OAc), formed by the electrophile attack of the mercury ion, remains attached to least substituted group at the end of the double bond. This electrophile has a considerable amount of positive charge on its two carbon atoms, but there is more positive charge on the more substituted carbon atom, where it is more stable. The water attack occurs on this more electrophilic carbon, and the Markovnikov orientation occurs.
In hydroboration, borane adds to the double bond in one step. Boron is added to the less hindered and less substituted carbon, and hydrogen is added to the more substituted carbon. The electrophilic boron atom adds to the less substituted end of the double bond, positioning the positive charge (and the hydrogen atom) at the more substituted end. The result is a product with the anti-Markovnikov orientation.