Answer:
Initially
of nitrogen dioxide were in the container .
Explanation:
Volume of the container at low pressure and at room temperature =
Number of moles in the container = 
After more addition of nitrogen gas at the same pressure and temperature.
Volume of the container after addition = 
Number of moles in the container after addition=
Applying Avogadro's law:
(at constant pressure and temperature)



Initially
of nitrogen dioxide were in the container .
an element's name, chemical symbol, atomic number, atomic mass.
IDK what you are even asking for
<span>We know that protons gives positive charge, neutrons no charge and electrons negative, then +14 - 12 = +2
So the charge of the atom is sign positive and magnitude 2</span>
There is one missing point in the question.
The formula to find an increase in boiling Temperature is :
ΔT = kb x M
ΔT = is the increase in boiling Temperature
Kb = Boiling point constant of the Solvent
M = Molarity
You did not provide the Kb. If you have it, you just have to insert it to the formula to find the ΔT.
And assuming that the other solution is water, you just have to add it up with 100 Celcius