1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
3 years ago
5

A pendulum has 330 J of potential energy at the highest point of its swing. How much kinetic energy will it have at the bottom o

f its swing?
Physics
1 answer:
Naddika [18.5K]3 years ago
6 0

The pendulum has a kinetic energy of 330 J at the bottom of its swing.

when a pendulum oscillates, the energy at its highest point is wholly potential, since it is momentarily at rest at the highest point. The pendulum experiences acceleration which is directed towards the mean position, as a result of which its speed increases. It has maximum speed at the point which is at the bottom of its swing.

As the pendulum swings from the highest to the lowest point, the potential energy at the highest point is converted into kinetic energy.

If air resistance can be neglected, one can apply the law of conservation of energy, which states that the total energy of a system remains constant.

In this case, the potential energy of 330 J at the highest point would be equal to the kinetic energy at the bottom point.

Therefore, the kinetic energy at the bottom of its swing will be 330 J.

You might be interested in
You are caulking a window. The caulk is rather thick and, to lay the bead correctly, the exit nozzle is small. A caulking gun us
ZanzabumX [31]

Answer:

The answer is

A. Pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.

Explanation:

 The question is incomplete, here is a complete question with full options

You are caulking a window. The caulk is rather thick and, to lay the bead correctly, the exit nozzle is small. A caulking gun uses a plunger which is operated by pulling back on a handle. You must squeeze the handle very hard to get the caulk to come out of the narrow opening because:_________.

A. pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.

B. viscous drag between the walls of the tip and the caulk causes the caulk to swirl around chaotically.

C. Newton’s third law requires most of the energy in the caulk to be used to push back on the plunger rather than moving it through the tip.

D. the high density of the caulk impedes its flow through the small opening.

Since the caulk is thick and the exit nozzle is small, the pressure needed to deliver the caulk will be very high as pressure is uniformly distributed at the plunger side at every part of the caulk, hence very high pressure is needed to deliver the caulk which is why the handle needed the very hard squeeze

3 0
3 years ago
An airliner arrives at the terminal, and its engines are shut off. The rotor of one of the engines has an initial clockwise angu
Ilia_Sergeevich [38]

(a) 1200 rad/s

The angular acceleration of the rotor is given by:

\alpha = \frac{\omega_f - \omega_i}{t}

where we have

\alpha = -80.0 rad/s^2 is the angular acceleration (negative since the rotor is slowing down)

\omega_f is the final angular speed

\omega_i = 2000 rad/s is the initial angular speed

t = 10.0 s is the time interval

Solving for \omega_f, we find the final angular speed after 10.0 s:

\omega_f = \omega_i + \alpha t = 2000 rad/s + (-80.0 rad/s^2)(10.0 s)=1200 rad/s

(b) 25 s

We can calculate the time needed for the rotor to come to rest, by using again the same formula:

\alpha = \frac{\omega_f - \omega_i}{t}

If we re-arrange it for t, we get:

t = \frac{\omega_f - \omega_i}{\alpha}

where here we have

\omega_i = 2000 rad/s is the initial angular speed

\omega_f=0 is the final angular speed

\alpha = -80.0 rad/s^2 is the angular acceleration

Solving the equation,

t=\frac{0-2000 rad/s}{-80.0 rad/s^2}=25 s

6 0
3 years ago
what happens to light when it falls upon a material that has a natural frequency equal to the frequency of the light?
mixas84 [53]

The energy from the light is transferred to the material, causing it to vibrate and absorb the light.

What is energy?
In physics, energy is the quantitative quality that is transmitted to the a body or a physical system, and is discernible in the work performed as well as in the form of light and heat. The law of conservation states that although energy can change its form, it cannot be created or destroyed. Energy is indeed a conserved quantity. The International System of Units' (SI's) joule is the measurement unit for energy (J). A moving object's kinetic energy, a solid object's elastic energy, chemical energy caused by chemical reactions, and the potential energy that an object stores (for instance because of its position inside a field) are examples of common forms of energy.

When light falls upon a material that has a natural frequency equal to the frequency of the light, the light will be absorbed by the material. This is due to resonance, which occurs when the frequency of the light matches the natural frequency of the material. The energy from the light is transferred to the material, causing it to vibrate and absorb the light.

To learn more about energy
brainly.com/question/582060
#SPJ4

7 0
2 years ago
What is the name of the space telescope in low earth orbit that was launched in 1990?
Mrrafil [7]

The Hubble Space Telescope is a joint ESA/NASA project and was launched in 1990 by the Space Shuttle mission STS-31 into a low-Earth orbit 569 km above the ground. During its lifetime Hubble has become one of the most important science projects ever. Hope this helps! ~ Autumn :)

4 0
4 years ago
A parallel-plate capacitor, with air dielectric, is charged by a battery, after which the battery is disconnected. A slab of gla
Diano4ka-milaya [45]

Complete Question

A parallel-plate capacitor, with air dielectric, is charged by a battery, after which the battery is disconnected. A slab of glass dielectric is then slowly inserted between the plates. As it is being inserted,  

A :

a force repels the glass out of the capacitor.  

B :

a force attracts the glass into the capacitor.    

C :

no force acts on the glass.      

D :

a net charge appears on the glass.      

E :

the glass makes the plates repel each other.

Answer:

The correct option is B

Explanation:

Generally when the glass dielectric is slowly inserted between the plated,

The positive plate of the capacitor will induce a negative charge on the glass while the negative  plate of the capacitor will induce a positive charge on glass which a electric field that posses an electric force that will attract the glass

3 0
3 years ago
Other questions:
  • Which option gives an object mass in SI units
    8·1 answer
  • The Hubble Space Telescope (HST) orbits 569 km above Earth’s surface. If HST has a tangential speed of 7,750 m/s, how long is HS
    8·2 answers
  • Which is the correct order for these steps in cell signaling?
    13·1 answer
  • The trajectory an air mass follows, whether cyclonic or anti-cyclonic, greatly affects what characteristics of the air mass?
    15·1 answer
  • What is the philosopher’s stone
    15·1 answer
  • If the mass of material is 44 grams and the volume of the material is 8cm^3 what would the density of the material be?
    9·1 answer
  • A 120-V rms voltage at 60.0 Hz is applied across an inductor, a capacitor, and a resistor in series. If the rms value of the cur
    7·1 answer
  • A cue ball of mass m1 = 0.325 kg is shot at another billiard ball, with mass m2 = 0.59 kg, which is at rest. The cue ball has an
    12·2 answers
  • Find the resultant gravitational force exerted on the object at the origin by the other two objects. The universal gravitational
    13·1 answer
  • On a sunny day, a family decided to take sail on a nearby lake. During sailing the wind applies a force of 25N north on the sail
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!