Answer:
5.6 L
Explanation:
We can apply Charles' Law here since our pressure is constant (will not change inside the refrigerator) and we are relating change in volume with change in temperature:
V₁ / T₁ = V₂ / T₂ where V₁ and T₁ are initial volume and temperature, and V₂ and T₂ are final volume and temperature. Let's plug in what we know and solve for the unknown:
28.0 L / 25 °C = V₂ / 5 °C => V₂ = 5.6 L
5.6 L is our new volume (at 5 °C).
Mg (s) + HCl (aq) → MgCl₂(s) + H₂(g)
Looking at the equation :
We have 1 Mg at the left hand side and 1 Mg as well on the right hand side.
So that is balanced.
We have 1 H at the left hand side and 2 H on the right hand side.
So that is not balanced. Same for Chlorine. Cl.
We add 2 to the HCl on the left hand side and that balances it.
Mg(s) + 2HCl(aq) → MgCl₂(s) + H₂(g)
Answer:
Not doubled
Explanation:
The equation below represent the ideal gases relationship
PV ÷ T = constant
Here
P denotes pressure,
V denotes volume,
T denotes temperature in degrees Kelvin
Now
20 ° c = 273 + 20
= 293 K
And,
40 ° c = 313 K
So,
V = Vo. 313 K ÷ 293 K = 1.07 Vo
So, the volume is NOT doubled.
In the case when the temperature would be determined in degrees celsius at 0 degrees so the volume would be zero
The mass (in grams) of iron, Fe that can be made from 21.5 g of Fe₂O₃ is 15.04 g
We'll begin by writing the balanced equation for the reaction. This is given below:
2Fe₂O₃ -> 4Fe + 3O₂
- Molar mass of Fe₂O₃ = 159.7 g/mol
- Mass of Fe₂O₃ from the balanced equation = 2 × 159.7 = 319.4 g
- Molar mass of Fe = 55.85 g/mol
- Mass of Fe from the balanced equation = 4 × 55.85 = 223.4 g
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
<h3>How to determine the mass of iron, Fe produced</h3>
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
Therefore,
21.5 g of Fe₂O₃ will decompose to produce = (21.5 × 223.4) / 319.4 = 15.04 g of Fe
Thus, 15.04 g of Fe were produced.
Learn more about stoichiometry:
brainly.com/question/9526265
#SPJ1
Electron microscopes differ from light microscopes in that they produce an image of a specimen by using a beam of electrons rather than a beam of light. Electrons have much a shorter wavelength than visible light, and this allows electron microscopes to produce higher-resolution images than standard light microscopes